Skip to Main Content

Advertisement

Skip Nav Destination

Issues

Cancer Research

Table of Contents


Obituary

In the Spotlight

Review

Priority Report

Targeting transcription-associated CDK9 synergizes with CDK4/6 inhibitor to drive tumor regression in multiple models of endocrine- and palbociclib-resistant ER+ breast cancer, which could address the challenge of overcoming resistance in patients.

Cancer Biology

Two cancer histotypes diverge from a common cell of origin epigenetically locked in different cell states, highlighting the importance of considering cell state to better understand the cell of origin of cancer.

Hypoxia induces stromal cells to secrete extracellular vesicles with increased miR-140–5p and miR-28–3p that are transferred to multiple myeloma cells and drive drug resistance by increasing the MAPK signaling.

KRAS and TP53 mutations shift activin-mediated signaling to overcome growth inhibition and promote partial EMT, identifying a subset of patients with colorectal cancer that could benefit from inhibition of TGFβ signaling.

Cancer Immunology

Elevating T-cell stemness by progressively blocking PI3Kδ signaling during ex vivo manufacturing of adoptive cell therapies alters metabolic and functional properties to enhance antitumor immunity dependent on Tcf1 and Lef1.

Therapeutic Development and Chemical Biology

Engineering CAR-T cells to upregulate CAR expression under hypoxic conditions induces metabolic reprogramming, reduces differentiation, and increases proliferation to enhance their antitumor activity, providing a strategy to improve efficacy and safety.

Translational Cancer Biology

XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage.

TGFβ inhibition skews cancer-associated fibroblasts toward an inflammatory phenotype that secretes autotaxin to drive adaptive resistance in PDAC, revealing autotaxin as a therapeutic target and biomarker of galunisertib response.

Cancer Landscapes

Mapping enhancer–target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.

The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.

Acknowledgment to Reviewers

Close Modal

or Create an Account

Close Modal
Close Modal