Abstract
Immune checkpoint blockade (ICB) has transformed cancer treatment, but success rates remain limited. Recent research suggests that dietary fiber enhances ICB efficacy through microbiome-dependent mechanisms. However, prior studies in mice compared grain-based chow (high-fiber) to low-fiber purified diet, but these diets also differed in other dimensions, including phytochemicals. Therefore, further work is needed to establish the robustness of the effect of fiber on ICB across cancer types and dietary contexts. Here, we investigated gut microbiome composition, metabolite levels, and ICB activity in mice fed grain-based chow or purified diets with differing quantities of isolated fibers (cellulose and inulin). Compared to dietary fiber content, consumption of chow versus purified diet had a greater effect on the gut microbiome and a much stronger impact on the metabolome. Studies in multiple tumor models revealed that fiber has a weaker impact on ICB (anti-PD-1) efficacy than previously reported. While diet impacted ICB in some models, the effect was not directionally consistent. None of the models tested displayed the pattern expected if fiber controlled ICB efficacy: strong efficacy in both chow and high-fiber purified diet but low efficacy in low-fiber purified diet. Thus, dietary fiber appears to have limited or inconsistent effects on ICB efficacy in mouse models, and other dietary factors that correlate with fiber intake may underlie clinical correlations between fiber consumption and immunotherapy efficacy.
Supplementary data
Flow cytometry gating strategy
Details of experimental diets
Antibodies used for flow cytometry