Optical activation of materials leads to thermal, photochemical and radiative processes which can be captured for response-based therapeutic design. The ability to use light as a reagent to provide free radical and activated oxygen-mediated cytotoxicity, combined with a control of conventional drug release, allows for the fabrication of light-controllable intelligent multiagent nanoconstructs that attack multiple pathways making nanomedicines more effective against cancer. This optically activated approach allows for a mechanistically diverse and spatiotemporally controlled strategy to tumor destruction. The molecules used for light activation have, in addition to therapeutic capabilities, finite fluorescence, creating an imaging handle and providing a built-in Theranostic process. Strategies for syntheses and applications of these nanoagents in biology and medicine will be discussed.

Citation Format: Tayyaba Hasan. Optically activated nanomedicines: Photochemical activation as a priming and imaging tool in pancreatic cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr SY06-02.