Adoptive immunotherapy is one of the most encouraging therapeutic strategies for the treatment of a range of cancers. One particularly promising avenue of research is the functional introduction of Chimeric Antigen Receptors (CARs) into naive Human T-Cells for autologous-immunotherapy. Currently, the genetic engineering of these cells is achieved through the use of proprietary integrating vector systems such as lentiviruses or the sleeping beauty transposon system which present a risk of genotoxicity associated with their random genomic integration.

We have invented a novel DNA Vector platform for the safe and efficient generation of genetically engineered T-Cells for Human Immunotherapy. This DNA vector system contains no viral components and comprises only clinically approved sequences, it does not integrate into the target cell's genome but it can replicate autonomously and extrachromosomally in the nucleus of dividing human primary cells. These DNA Vectors offer several advantages over currently used vector systems; they are not subject to commercial licences, they are cheaper and easier to produce, and they can more quickly genetically modify human cells without the inherent risk of integrative mutagenesis.

In preclinical experiments we have successfully generated genetically engineered human T-Cells expressing the CAR receptor against several epitopes and have demonstrated their viability and capability in targeting and killing human cancer cells which express these epitopes. The long term anti-tumor activity of our DNA-CAR-T cells has been confirmed in vivo using xenotransplanted cell lines in immunodeficient mice.

We believe that this novel DNA Vector system provides a unique and innovative approach to this exciting therapeutic strategy for cancer therapy. We estimate that this novel methodology will provide a simpler method of CAR T-cell manufacturing, resulting in a 10-fold reduction in the cost of the CART-product.

Citation Format: Patrick Schmidt, Matthias Bozza, Aileen Berger, Claudia Luckner-Minden, Alexandra Tuch, Inka Zörnig, Dirk Jäger, Richard Harbottle. Novel DNA vectors encoding a chimeric antigen receptor mediate long term expression without genomic integration [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3573.