Introduction: Presence of circulating tumor cells has prognostic value in multiple malignancies, and molecular analysis of CTCs is currently ongoing in numerous clinical trials. Most CTC enrichment methods rely on standard epithelial and leukocyte markers (CK+CD45-), so recovered cells are assumed to be of epithelial origin but never shown to be bona fide tumor cells. Conversely, atypical cells lacking the characteristic marker profile may not be analyzed, even though they may represent important tumor subpopulations. Here we evaluate a rapid, non-exhaustive, and cost-effective first-pass genomic analysis of individual candidate CTCs. This approach allows efficient upfront CNA-based confirmation that a given cell is of tumor origin, while leaving abundant DNA for deeper subsequent analysis in cells of interest.

Methods: Whole peripheral blood of metastatic prostate cancer patients was enriched for CTCs using the CellSearch® system (Janssen Diagnostics) under an IRB-approved protocol, and 5 samples with >5 CTCs were selected for further study. Next, the DEPArray™ v2 system (Menarini Silicon Biosystems) was used to identify and isolate single CTCs (CK+CD45-DAPI+) and paired white blood cells (WBCs; CK-CD45+DAPI+) from the enriched samples. In addition, cells negative for both cytokeratin and CD45 but with characteristic malignant morphology (large with high nuclear-cytoplasmic ratio) were isolated. Recovered single cells were whole-genome amplified with Ampli1™ WGA and quality controlled by Ampli1 QC. Ampli1 LowPass kit was then used to prepare NGS libraries for absolute CNA profiling by low-pass WGS.

Results: Thirty-three single CTCs (CK+CD45-DAPI+) and 30 WBCs (CK-CD45+DAPI+), as well as 47 putative CTCs with non-conventional phenotype (CK-CD45-DAPI+) were isolated. Single-cell WGA products with high Genome-Integrity Index (QC score ≥3) were prioritized for CNA analysis. Ampli1 LowPass data demonstrated copy number gains/losses confirming tumor origin of the CK+ cells, while WBCs showed a normal profile. In addition, a portion of the cells having non-conventional phenotype also demonstrated copy number alterations consistent with tumor origin.

Discussion: We demonstrate a WGA and low-pass WGS approach on single CTCs sorted from enriched peripheral blood, which offers a dual benefit: i) it allows rapid, non-exhaustive upfront identification of bona fide tumor cells for further study, and ii) it reveals genetic similarities and diversities (vis a vis copy number alteration) across CTCs of classical as well as non-conventional phenotypes, which may better represent clonal diversity. In a clinical setting, this molecular approach may be more effective for reliably identifying and characterizing heterogeneous CTCs, yielding profiles that more accurately reflect disease evolution and inform treatment strategies.

Citation Format: Gareth Morrison, Valeria Sero, Yucheng Xu, Jacek Pinski, Sue Ingles, David Quinn, Claudio Forcato, Genny Buson, Chiu-Ho Webb, Kyle Horvath, Aditi Khurana, Gianni Medoro, Suman Verma, Matthew Moore, Philip Cotter, Nicolò Manaresi, Farideh Bischoff, Amir Goldkorn. Orthogonal identification of circulating tumor cells (CTCs) using single cell low pass whole-genome sequencing (WGS) and copy-number alteration (CNA) analysis [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1717. doi:10.1158/1538-7445.AM2017-1717