Prior studies have shown that the RARA gene is associated with a super-enhancer (SE) and has upregulated mRNA expression in a subset of AML patients. Furthermore, this has been found to confer increased sensitivity to SY-1425, a potent and selective RARα agonist. We sought to better characterize the cell state and transcription factor circuitry in these RARA-high AML cells. Clustering of 62 primary AML patient samples based on their genome wide SE maps identified six discrete clusters. RARA-high patients partitioned principally into cluster 2, and to a lesser extent 1, suggesting that RARA upregulation is associated with a specific transcription factor (TF) network and cell state. To start unraveling the TF circuitry in the RARA-high cluster, we investigated which other TFs were SE associated with clusters 1 and 2. In particular, interferon regulatory factor 8 (IRF8) was found to be strongly associated with clusters 1 and 2 by SE and mRNA expression, similar to RARA. Moreover, the expression of both genes is correlated in primary patient samples. IRF8 is involved in interferon signaling and previous studies have shown crosstalk between interferon and retinoic acid signaling. Furthermore, aberrant IRF8 pathway signaling is implicated in AML and CML pathogenesis. The tight clustering of RARA and IRF8 in patient subgroups defined by genome wide enhancer maps suggests RARα and IRF8 may form an integrated transcriptional circuit. Indeed, treatment with SY-1425 was found to strongly induce interferon-like gene expression changes in AML cells with high RARA or IRF8 levels, including the tumor suppressive IFN responsive gene IRF1. While RARA-high AML cell line models have been previously shown to respond to SY-1425, we found that models with high IRF8 expression and low levels of RARA were also found to respond to SY-1425. Such IRF8-high, RARA-low AML cell lines showed activation of similar transcriptional pathways as RARA-high cell lines in response to SY-1425 based on GSEA. IRF8-high AML also had comparable low nM EC50 anti-proliferative effects following SY-1425 treatment. In addition, SY-1425 was found to elicit differentiation in both RARA-high and IRF8-high AML cell lines based on flow cytometry. While RARA and IRF8 expression appear correlated, this data suggests that IRF8 levels may predict for sensitivity to SY-1425 in addition to RARA levels, particularly in cases of AML with high IRF8 expression but low RARA levels. Insights derived from enhancer analysis, transcriptional profiling and differentiation response in preclinical models support the recently initiated Phase 2 trial of SY-1425 (NCT02807558) in which we are evaluating the SE based patient selection strategies and gene circuitry derived pharmacodynamics clinical measurements, including differentiation markers, in patients with AML and MDS.

Citation Format: Michael R. McKeown, Matthew L. Eaton, Chris Fiore, Emily Lee, Katie Austgen, Darren Smith, M. Ryan Corces, Ravindra Majeti, Christian C. Fritz. AML patient clustering by super-enhancers reveals an RARA associated transcription factor signaling partner [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1511. doi:10.1158/1538-7445.AM2017-1511