Mesenchymal properties and the epithelial-to-mesenchymal transition (EMT) contribute to the initiation and progression of many tumor types and ultimately can lead to drug resistance and highly aggressive disease. It is becoming increasingly clear that the more mesenchymal characteristics cancer cells acquire the more resistant they become to standard chemotherapy, targeted agents, and even immune checkpoint inhibitors. We have been exploring the role of the receptor tyrosine kinase, AXL, and its related TAM family members, in promoting the mesenchymal phenotype in cancer cells and how these effects promote drug resistance and escape from immune surveillance. TP-0903, a potent AXL inhibitor, leads to a reversal of the mesenchymal phenotype in multiple cancer models. Following TP-0903 treatment, we observed changes in mRNA expression using RT-qPCR and protein expression using standard immunoblotting that are consistent with a reversal of the mesenchymal phenotype. Upon treatment with TP-0903 cancer cells possessed lower motility and a decrease in anchorage-independent growth, both hallmarks of a mesenchymal cell. In vivo models of erlotinib-resistant non-small cell lung cancer (NSCLC) were utilized to demonstrate TP-0903 single agent activity in highly mesenchymal models; however, more importantly, treatment with TP-0903 was able to sensitize this highly refractory model to erlotinib. AXL function and tumor mesenchymal characteristics also provide mechanisms for the cancer cells to evade immune surveillance. This is achieved by the role that AXL plays in detecting neighboring apoptotic cells resulting in the engulfment of dead cells (efferocytosis) and the associated debris in order to prevent the immune system's exposure to auto-antigens under normal physiological conditions or exposure to cancer-associated neo-antigens in a tumor. Inhibition of AXL by TP-0903 can potentially inhibit tumor-associated efferocytosis leading to a stronger immunogenic response to the tumor. Indeed, results demonstrated synergy when TP-0903 was combined with an anti-PD-L1 agent in a syngeneic triple negative breast cancer mouse model. Interestingly, during the evaluation of TP-0903 in models of EMT, we detected dramatic change in the expression of the retinoic acid (RA) metabolizing protein CYP26A1, suggesting that AXL inhibition leads to changes in RA metabolism. Our data suggest that AXL induces a transition to a mesenchymal phenotype in cancer cells through the suppression of RA signaling and that TP-0903 can rapidly reverse this phenotype by signaling through RA causing the cell to revert to a more differentiated state. Due to its ability to reverse the aggressive mesenchymal phenotype of cancer cells, TP-0903 is a promising agent with the potential to have single agent activity and combined synergy with targeted anti-cancer agents and immunotherapies.

Citation Format: Katherine K. Soh, Wontak Kim, Ye Sol Lee, Peter Peterson, Adam Siddiqui-Jain, Steven L. Warner, David J. Bearss, Clifford J. Whatcott. AXL inhibition leads to a reversal of a mesenchymal phenotype sensitizing cancer cells to targeted agents and immuno-oncology therapies. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 235.