Development of targeted therapeutics required translationally relevant preclinical models with well-characterized cancer genome alterations. Here, by studying 52 colorectal patient-derived tumor xenografts (PDX), we examined key molecular alterations of the IGF2–PI3K and ERBB–RAS pathways and response to cetuximab. PDX molecular data were compared with that published for patient colorectal tumors in The Cancer Genome Atlas. We demonstrated a significant pattern of mutual exclusivity of genomic abnormalities in the IGF2–PI3K and ERBB–RAS pathways. The genomic anomaly frequencies observed in microsatellite stable PDX reproduce those detected in nonhypermutated patient tumors. We found frequent IGF2 upregulation (16%), which was mutually exclusive with IRS2, PIK3CA, PTEN, and INPP4B alterations, supporting IGF2 as a potential drug target. In addition to maintaining the genomic and histologic diversity, correct preclinical models need to reproduce drug response observed in patients. Responses of PDXs to cetuximab recapitulate also clinical data in patients, with partial or complete response in 15% (8 of 52) of PDXs and response strictly restricted to KRAS wild-type models. The response rate reaches 53% (8 of 15) when KRAS, BRAF, and NRAS mutations are concomitantly excluded, proving a functional cross-validation of predictive biomarkers obtained retrospectively in patients. Collectively, these results show that, because of their clinical relevance, colorectal PDXs are appropriate tools to identify both new targets, like IGF2, and predictive biomarkers of response/resistance to targeted therapies. Cancer Res; 75(8); 1560–6. ©2015 AACR.

Colorectal cancer remains a major cause of mortality worldwide and colorectal cancer patient death is generally attributable to metastasis development. Comprehensive molecular characterization of colorectal cancer has identified key gene and pathway alterations important for initiation and progression of colorectal cancer, including alterations in the PI3K and ERBB–RAS pathways (1, 2). Some genetic anomalies have been also shown to predict response to specific therapies, such as activating mutations in KRAS, which predict resistance to anti-EGFR monoclonal antibodies (MAb; ref. 3). For efficient development of new therapies and companion biomarkers, preclinical models mimicking the molecular epidemiology and drug sensitivity of human tumors are needed.

In colorectal cancer, tumor-specific patient-derived xenograft (PDX) models have shown to retain the intratumoral clonal heterogeneity, chromosomal instability, and histology of the parent tumor through passages in mice (4–7). To extend these observations, we investigated here a collection of 52 colorectal PDXs (6), composed of 48 microsatellite stability (MSS) and four microsatellite instability (MSI) tumors, for the presence and prevalence of molecular features reported in large colorectal cancer patient cohorts (1, 2, 8). In particular, we studied key alterations in IGF2–PI3K and ERBB–RAS pathways and the role of these alterations in predicting response to cetuximab.

Patient-derived tumor xenografts

Tumor xenografts were established directly from patient tumors (6) and were routinely passaged by subcutaneous engraftment in immunodeficient CB17-SCID mice (Charles River Laboratories). Xenografts, passage P6-P9, were harvested from 3 mice for each model, when they reached around 150 to 300 mm3 in size for RNA and DNA extraction. For in vivo pharmacological studies, cetuximab (Imclone) was given at 12.5 mg/kg/adm, (Q3D×2) ×2 i.p.), mice bearing 100 to 200 mm3 tumors at start of therapy (n = 8–10 per group) as already described (6). All experimental procedures were approved by Sanofi Laboratory Animal Care and Use committee.

MSI status

MSI testing was performed according to the National Cancer Institute guidelines using a five-microsatellite consensus panel (6).

DNA sequencing

Next-generation sequencing and mutation calling were performed at Beijing Genomics Institute (BGI). Library preparation was performed using exome capture Agilent SureSelect All Exon 50M. Libraries were sequenced using the Illumina HiSeq platform. Quality single-nucleotide polymorphism (SNP) calling criteria have been applied: SNP quality is equal or greater than 20; the minimum sequencing depth is 4× and the mean is 100×, with 99% of coverage target region. To evaluate and eliminate the false-positive SNPs calls generated by cross hybridization with mouse DNA, we have detected and filtered out reads aligned to mouse reference sequences before doing human whole-exome sequencing analysis; by this way, only specific human calling are considerate. Besides, KRAS, BRAF, and PIK3CA mutations were validated by Sanger method in a different tumor sample.

CGH array analysis

Evaluation of genome-wide, gene copy number was performed using the 250k and 400k oligonucleotide CGH array Agilent technology using two biologic duplicates and two independent experiments. Oligonucleotide array CGH processing was performed as detailed in the manufacturer's protocol (version 6.2 October 2009; http://www.agilent.com). The log2 ratio and segmentation were generated using Array Studio software. Array Studio, Array Viewer, Array Server, and all other Omicsoft products or service names are registered trademarks or trademarks of Omicsoft Corporation.

Gene expression profiling

The analysis of gene expression was done using U133 Plus Affymetrix microarrays with biologic triplicate (three tumor tissues removed from three distinct mice for each model, passage P6-P9).

Real-time RT-PCR

Affymetrix data of candidate genes were confirmed by qRT-PCR using previously described methodology (9).

Immunohistochemistry

PTEN and INPP4B expression were determined on 4-μm-thick AFA-fixed paraffin-embedded sections. Antigen retrieval was done by incubating tissue sections in an 850-Watt microwave oven for 36 minutes in Tris–EDTA or in citrate buffer for INPP4B and PTEN staining, respectively. Tissue sections were then incubated for 1 hour at room temperature with primary antibodies (anti-INPP4B, clone EPR3108Y, dilution 1:50, rabbit mAb, LSBio; anti-PTEN, clone SP218, dilution 1:50, rabbit mAb, Spring). Staining was revealed by using OmniMap HRP anti-Rabbit (Ventana Medical Systems) and diaminobenzidine (Dako) as chromogen.

Comprehensive molecular characterization of tumor samples from colorectal cancer patients has identified a handful of recurrent mutated genes within critical pathways (1, 2, 10). Among these, the PI3K and ERBB–RAS signaling, accurately dissected by the Cancer Genome Atlas Network (TCGA; ref. 2), provide promising therapeutic targets.

To gain more insight into the genomic abnormalities within the PI3K and ERBB–RAS signaling pathways, a large cohort of 52 colorectal PDXs established by the CReMEC consortium (48 MSS and four MSI tumors; ref. 6) was analyzed.

We first examined six genes identified as key upstream elements in the PI3K pathway (2): IGF2, IRS2, PIK3CA, PIK3R1, PTEN, and INPP4B (Fig. 1A, Table 1). Several lines of evidence underline the importance of IGF2 in colorectal cancer. IGF2 is the single most overexpressed gene in colorectal neoplasia relative to normal colorectal mucosa (11) and loss of imprinting of IGF2, one mechanism for its frequent overexpression, is also a risk factor for colorectal cancer (12). More recently, TCGA revealed IGF2 as an important node in the PI3K pathway with mutual exclusion between IGF2, IRS2, PIK3CA, PIK3R1, and PTEN genomic alterations. Here, gene expression analyses identified IGF2 overexpression in seven PDXs. As reported in patients (1, 2), IGF2 overexpression in PDXs (5 out of 7) is mainly due to focal IGF2 amplification (Fig. 1A and B).

Figure 1.

Molecular alterations of the IGF2–PI3K and ERBB–RAS pathways in MSS and MSI colorectal cancer xenografts. A, genomic alterations of the IGF2–PI3K and ERBB–RAS pathways. Mutations were determined by NGS. Tumors were considered to be amplified if the gene copy number was >3 using CGH array analysis. Gene overexpression is defined by an expression superior to average in all PDX panel + 1 SD. B, correlation of expression levels with copy-number changes for IGF2. Amplification, >3 gene copy; focal amplification, <10 genes. C, in situ expression of PTEN and INPP4B proteins. Anti-PTEN and INPP4B immunohistochemistry results for representative negative (blue staining) and positive (brown staining) PDXs. Magnification, ×40.

Figure 1.

Molecular alterations of the IGF2–PI3K and ERBB–RAS pathways in MSS and MSI colorectal cancer xenografts. A, genomic alterations of the IGF2–PI3K and ERBB–RAS pathways. Mutations were determined by NGS. Tumors were considered to be amplified if the gene copy number was >3 using CGH array analysis. Gene overexpression is defined by an expression superior to average in all PDX panel + 1 SD. B, correlation of expression levels with copy-number changes for IGF2. Amplification, >3 gene copy; focal amplification, <10 genes. C, in situ expression of PTEN and INPP4B proteins. Anti-PTEN and INPP4B immunohistochemistry results for representative negative (blue staining) and positive (brown staining) PDXs. Magnification, ×40.

Close modal
Table 1.

The 52 PDXs have been analyzed for gene expression and gene copy number

Gene expression
Patient tumor informationIGF2IRS2EGFRERBB2INPP4BGene copy number
Tumor sitePrimary tumor locationStageMicrosat statusqRT-PCR202409_at210881_s_atqRT-PCR209184_s_atqRT-PCR201983_s_atqRT-PCR216836_s_atqRT-PCR205376_atIGF2EGFRERBB2INPP4B
PDX #1 Primary Left pT3N0M0 MSS 76 136 1268 1033 495 1424 1646 1684 1268 468 2.51 2.51 2.58 1.84 
PDX #2 Primary Rectum pT4N1M0 MSS 67 114 1589 948 273 1075 853 1236 30 164 1.82 2.75 2.32 1.68 
PDX #3 Metastasis Left pT4N1M1 MSS 31538 5790 348 2431 1083 488 695 2186 1184 55 29 2.15 2.27 2.41 1.21 
PDX #4 Primary Left pT2N0M0 MSS 11 65 119 5972 3682 513 1550 1622 1054 506 332 2.44 2.79 2.27 2.05 
PDX #5 Metastasis Right pT3N2M1 MSS 69 114 1256 1141 451 947 1621 1811 451 259 2.36 2.46 1.85 
PDX #6 Metastasis Left pT2N1M1 MSS 384 67 123 1117 833 1037 1561 1158 1275 236 218 2.17 5.09 2.2 1.48 
PDX #7 Primary Right pT3N1M1 MSS 3124 10989 669 637 438 42 69 386 585 192 172 2.44 2.32 1.75 2.13 
PDX #8 Metastasis Right pT3N1M1 MSS 102 69 125 970 764 229 910 1279 703 424 135 1.61 3.03 1.63 2.09 
PDX #9 Primary Left pT3N0M0 MSS 71 150 4526 1848 617 598 1951 846 531 70 2.36 2.7 1.47 1.34 
PDX #10 Metastasis Right pT2N1M1 MSS ND 17017 612 2289 1918 444 778 1465 1581 563 110 2.09 1.86 1.94 1.81 
PDX #11 Metastasis Left pT4N0M0 MSS 20 839 137 571 1035 256 786 2198 2100 489 247 2.14 2.55 3.96 1.3 
PDX #12 Primary Right pT3N0M0 MSS 44 59 117 4263 2927 762 1189 2401 1713 689 542 2.5 3.77 2.36 2.16 
PDX #13 Primary Left pT3N1M1 MSS 198 122 589 614 455 1127 927 1261 221 47 3.03 2.04 1.46 2.19 
PDX #14 Metastasis Left pT3N1M1 MSS 61 116 1303 777 859 1233 1187 1190 440 162 2.65 3.51 1.95 2.09 
PDX #15 Primary Rectum pT2N0M0 MSS 453217 29902 2354 431 546 303 826 1081 1292 255 190 2.44 2.49 1.84 
PDX #16 Metastasis Left pT3N0M1 MSS 76 125 6939 1920 1013 1098 2070 975 1504 159 2.98 3.33 1.9 1.71 
PDX #17 Metastasis Left pT4N1M1 MSS 47 230 122 17254 4728 416 783 1934 1242 423 253 2.02 2.01 2.11 1.96 
PDX #18 Primary Left pT4N1M1 MSS 26 64 124 5582 2774 167 536 818 1413 179 162 2.07 2.16 2.15 1.49 
PDX #19 Primary Left pT2N1M0 MSS 128707 21436 687 789 410 296 577 2429 1885 1564 285 3.38 2.49 2.57 1.86 
PDX #20 Primary Left pT3N1M1 MSS 97 117 5793 3261 374 1085 1025 1565 1347 501 2.13 2.12 1.51 1.42 
PDX #21 Primary Rectum pT4N0M0 MSS 66 106 2056 1091 984 1345 2004 1442 1424 447 3.4 2.65 2.35 1.55 
PDX #22 Primary Rectum pT3N2M1 MSS 27 86 138 6353 3169 241 767 1008 1165 456 252 2.16 2.59 1.99 1.32 
PDX #23 Primary Right pT3N1M0 MSS 65 114 7049 1531 1185 1219 3538 1570 4545 372 1.85 2.25 1.62 2.17 
PDX #24 Primary Left pT3N2M1 MSS 51 81 120 3164 1647 400 787 1269 977 827 410 2.08 2.05 2.15 2.03 
PDX #25 Carcinosis Left pT4N0M0 MSS 15 55 106 930 578 462 774 2848 1623 865 158 1.79 1.77 2.62 1.76 
PDX #26 Primary Rectum pT3N2M0 MSS 107 64 128 1852 2284 341 833 3302 1359 594 216 2.23 1.98 2.95 1.96 
PDX #27 Primary Rectum pT3N2M0 MSS 72 114 8003 2179 206 489 2681 1293 819 207 1.96 1.95 1.99 1.94 
PDX #28 Primary Left pT3N1M1 MSS 39 86 120 112 1339 453 885 8657 2888 965 224 2.14 2.44 9.67 1.21 
PDX #29 Metastasis Right pT3N0M1 MSS 83 105 1311 249 568 823 1071 5896 574 394 2.47 4.31 1.54 1.49 
PDX #30 Primary Rectum pT3N2M0 MSS 68 126 3576 672 241 1534 1181 903 619 232 2.27 2.06 2.09 1.4 
PDX #31 Primary Right pT3N0M1 MSS 69 118 735 732 416 1151 1766 2138 852 188 1.38 2.15 2.25 1.13 
PDX #32 Primary Left pT3N2M1 MSS 82 127 208 393 434 1259 1691 1936 885 207 1.68 2.83 2.17 1.48 
PDX #33 Primary Right pT3N2M1 MSS 16573 3521 216 5779 2368 1606 2423 1767 1302 852 419 2.46 3.63 2.38 1.3 
PDX #34 Carcinosis Right pT4N2M1 MSS 56 115 2026 1612 700 1562 1528 1592 741 272 1.72 2.23 1.56 1.52 
PDX #35 Primary Rectum pT3N2M0 MSS 68 143 2708 1645 566 1074 761 955 44 30 1.29 2.17 2.28 1.12 
PDX #36 Primary Left pT3N1M1 MSS 109409 26618 1489 1469 2033 249 1052 724 1374 171 162 4.05 2.51 2.62 1.87 
PDX #37 Metastasis Left pT3N1M1 MSS 117346 22391 741 1558 1678 219 723 585 937 434 285 4.16 2.66 1.63 2.15 
PDX #38 Metastasis Left pT3N1M1 MSS 154 92 106 3975 2706 528 1364 1684 1841 1100 618 1.95 2.39 2.41 1.63 
PDX #39 Primary Right pT3N0M0 MSS 137361 23511 1023 990 501 339 989 1133 1344 711 223 3.26 2.01 2.1 1.5 
PDX #40 Metastasis Left pT4NxM1 MSS 20 93 123 1968 1107 425 895 1617 1273 872 284 ND ND ND 1.93 
PDX #41 Carcinosis Left pT4NxM1 MSS 1688 68 122 4003 2175 490 888 2176 1139 1531 326 1.98 2.02 1.95 
PDX #42 Primary Right pT4N2M1 MSS 72 123 900 642 186 347 1843 1720 636 165 2.98 2.57 3.33 1.18 
PDX #43 Metastasis Right pT4N2M1 MSS 66 112 1462 1015 175 349 1457 1526 809 195 2.33 2.4 2.44 1.21 
PDX #44 Carcinosis Left NA MSS 69 121 5976 2530 696 1122 2348 1771 656 203 2.31 3.09 2.66 1.24 
PDX #45 Primary Left pT3N1M0 MSS 369 ND ND 6989 ND 726 ND 1607 ND 2741 ND 2.5 2.2 2.63 1.78 
PDX #46 Primary Right pT3N1M1 MSS 76 129 1775 1412 409 896 929 1061 375 209 1.93 2.49 1.79 1.68 
PDX #47 Primary Left pT3N1M0 MSS 22 76 133 5343 1820 663 1072 1301 892 736 168 2.47 2.48 1.37 1.28 
PDX #48 Carcinosis Left pT3N1M1 MSS ND ND 5567 ND 307 ND 973 ND 773 ND 2.64 2.23 1.61 1.48 
PDX #49 Primary Right pT4N0M0 MSI ND ND 7060 ND 546 ND 2742 ND 458 ND 1.98 2.04 1.97 
PDX #50 Primary Right pT4N1M0 MSI 67 135 6806 3154 458 606 2335 2051 513 139 1.97 1.96 1.99 1.95 
PDX #51 Primary Left pT4N1Mx MSI 11 75 125 4174 1724 749 1485 2005 1731 326 113 2.02 2.31 2.6 1.48 
PDX #52 Primary Right pT3N0M0 MSI 504 152 135 1792 861 472 92 839 908 829 156 1.97 1.96 2.01 1.95 
Gene expression
Patient tumor informationIGF2IRS2EGFRERBB2INPP4BGene copy number
Tumor sitePrimary tumor locationStageMicrosat statusqRT-PCR202409_at210881_s_atqRT-PCR209184_s_atqRT-PCR201983_s_atqRT-PCR216836_s_atqRT-PCR205376_atIGF2EGFRERBB2INPP4B
PDX #1 Primary Left pT3N0M0 MSS 76 136 1268 1033 495 1424 1646 1684 1268 468 2.51 2.51 2.58 1.84 
PDX #2 Primary Rectum pT4N1M0 MSS 67 114 1589 948 273 1075 853 1236 30 164 1.82 2.75 2.32 1.68 
PDX #3 Metastasis Left pT4N1M1 MSS 31538 5790 348 2431 1083 488 695 2186 1184 55 29 2.15 2.27 2.41 1.21 
PDX #4 Primary Left pT2N0M0 MSS 11 65 119 5972 3682 513 1550 1622 1054 506 332 2.44 2.79 2.27 2.05 
PDX #5 Metastasis Right pT3N2M1 MSS 69 114 1256 1141 451 947 1621 1811 451 259 2.36 2.46 1.85 
PDX #6 Metastasis Left pT2N1M1 MSS 384 67 123 1117 833 1037 1561 1158 1275 236 218 2.17 5.09 2.2 1.48 
PDX #7 Primary Right pT3N1M1 MSS 3124 10989 669 637 438 42 69 386 585 192 172 2.44 2.32 1.75 2.13 
PDX #8 Metastasis Right pT3N1M1 MSS 102 69 125 970 764 229 910 1279 703 424 135 1.61 3.03 1.63 2.09 
PDX #9 Primary Left pT3N0M0 MSS 71 150 4526 1848 617 598 1951 846 531 70 2.36 2.7 1.47 1.34 
PDX #10 Metastasis Right pT2N1M1 MSS ND 17017 612 2289 1918 444 778 1465 1581 563 110 2.09 1.86 1.94 1.81 
PDX #11 Metastasis Left pT4N0M0 MSS 20 839 137 571 1035 256 786 2198 2100 489 247 2.14 2.55 3.96 1.3 
PDX #12 Primary Right pT3N0M0 MSS 44 59 117 4263 2927 762 1189 2401 1713 689 542 2.5 3.77 2.36 2.16 
PDX #13 Primary Left pT3N1M1 MSS 198 122 589 614 455 1127 927 1261 221 47 3.03 2.04 1.46 2.19 
PDX #14 Metastasis Left pT3N1M1 MSS 61 116 1303 777 859 1233 1187 1190 440 162 2.65 3.51 1.95 2.09 
PDX #15 Primary Rectum pT2N0M0 MSS 453217 29902 2354 431 546 303 826 1081 1292 255 190 2.44 2.49 1.84 
PDX #16 Metastasis Left pT3N0M1 MSS 76 125 6939 1920 1013 1098 2070 975 1504 159 2.98 3.33 1.9 1.71 
PDX #17 Metastasis Left pT4N1M1 MSS 47 230 122 17254 4728 416 783 1934 1242 423 253 2.02 2.01 2.11 1.96 
PDX #18 Primary Left pT4N1M1 MSS 26 64 124 5582 2774 167 536 818 1413 179 162 2.07 2.16 2.15 1.49 
PDX #19 Primary Left pT2N1M0 MSS 128707 21436 687 789 410 296 577 2429 1885 1564 285 3.38 2.49 2.57 1.86 
PDX #20 Primary Left pT3N1M1 MSS 97 117 5793 3261 374 1085 1025 1565 1347 501 2.13 2.12 1.51 1.42 
PDX #21 Primary Rectum pT4N0M0 MSS 66 106 2056 1091 984 1345 2004 1442 1424 447 3.4 2.65 2.35 1.55 
PDX #22 Primary Rectum pT3N2M1 MSS 27 86 138 6353 3169 241 767 1008 1165 456 252 2.16 2.59 1.99 1.32 
PDX #23 Primary Right pT3N1M0 MSS 65 114 7049 1531 1185 1219 3538 1570 4545 372 1.85 2.25 1.62 2.17 
PDX #24 Primary Left pT3N2M1 MSS 51 81 120 3164 1647 400 787 1269 977 827 410 2.08 2.05 2.15 2.03 
PDX #25 Carcinosis Left pT4N0M0 MSS 15 55 106 930 578 462 774 2848 1623 865 158 1.79 1.77 2.62 1.76 
PDX #26 Primary Rectum pT3N2M0 MSS 107 64 128 1852 2284 341 833 3302 1359 594 216 2.23 1.98 2.95 1.96 
PDX #27 Primary Rectum pT3N2M0 MSS 72 114 8003 2179 206 489 2681 1293 819 207 1.96 1.95 1.99 1.94 
PDX #28 Primary Left pT3N1M1 MSS 39 86 120 112 1339 453 885 8657 2888 965 224 2.14 2.44 9.67 1.21 
PDX #29 Metastasis Right pT3N0M1 MSS 83 105 1311 249 568 823 1071 5896 574 394 2.47 4.31 1.54 1.49 
PDX #30 Primary Rectum pT3N2M0 MSS 68 126 3576 672 241 1534 1181 903 619 232 2.27 2.06 2.09 1.4 
PDX #31 Primary Right pT3N0M1 MSS 69 118 735 732 416 1151 1766 2138 852 188 1.38 2.15 2.25 1.13 
PDX #32 Primary Left pT3N2M1 MSS 82 127 208 393 434 1259 1691 1936 885 207 1.68 2.83 2.17 1.48 
PDX #33 Primary Right pT3N2M1 MSS 16573 3521 216 5779 2368 1606 2423 1767 1302 852 419 2.46 3.63 2.38 1.3 
PDX #34 Carcinosis Right pT4N2M1 MSS 56 115 2026 1612 700 1562 1528 1592 741 272 1.72 2.23 1.56 1.52 
PDX #35 Primary Rectum pT3N2M0 MSS 68 143 2708 1645 566 1074 761 955 44 30 1.29 2.17 2.28 1.12 
PDX #36 Primary Left pT3N1M1 MSS 109409 26618 1489 1469 2033 249 1052 724 1374 171 162 4.05 2.51 2.62 1.87 
PDX #37 Metastasis Left pT3N1M1 MSS 117346 22391 741 1558 1678 219 723 585 937 434 285 4.16 2.66 1.63 2.15 
PDX #38 Metastasis Left pT3N1M1 MSS 154 92 106 3975 2706 528 1364 1684 1841 1100 618 1.95 2.39 2.41 1.63 
PDX #39 Primary Right pT3N0M0 MSS 137361 23511 1023 990 501 339 989 1133 1344 711 223 3.26 2.01 2.1 1.5 
PDX #40 Metastasis Left pT4NxM1 MSS 20 93 123 1968 1107 425 895 1617 1273 872 284 ND ND ND 1.93 
PDX #41 Carcinosis Left pT4NxM1 MSS 1688 68 122 4003 2175 490 888 2176 1139 1531 326 1.98 2.02 1.95 
PDX #42 Primary Right pT4N2M1 MSS 72 123 900 642 186 347 1843 1720 636 165 2.98 2.57 3.33 1.18 
PDX #43 Metastasis Right pT4N2M1 MSS 66 112 1462 1015 175 349 1457 1526 809 195 2.33 2.4 2.44 1.21 
PDX #44 Carcinosis Left NA MSS 69 121 5976 2530 696 1122 2348 1771 656 203 2.31 3.09 2.66 1.24 
PDX #45 Primary Left pT3N1M0 MSS 369 ND ND 6989 ND 726 ND 1607 ND 2741 ND 2.5 2.2 2.63 1.78 
PDX #46 Primary Right pT3N1M1 MSS 76 129 1775 1412 409 896 929 1061 375 209 1.93 2.49 1.79 1.68 
PDX #47 Primary Left pT3N1M0 MSS 22 76 133 5343 1820 663 1072 1301 892 736 168 2.47 2.48 1.37 1.28 
PDX #48 Carcinosis Left pT3N1M1 MSS ND ND 5567 ND 307 ND 973 ND 773 ND 2.64 2.23 1.61 1.48 
PDX #49 Primary Right pT4N0M0 MSI ND ND 7060 ND 546 ND 2742 ND 458 ND 1.98 2.04 1.97 
PDX #50 Primary Right pT4N1M0 MSI 67 135 6806 3154 458 606 2335 2051 513 139 1.97 1.96 1.99 1.95 
PDX #51 Primary Left pT4N1Mx MSI 11 75 125 4174 1724 749 1485 2005 1731 326 113 2.02 2.31 2.6 1.48 
PDX #52 Primary Right pT3N0M0 MSI 504 152 135 1792 861 472 92 839 908 829 156 1.97 1.96 2.01 1.95 

NOTE: Gene expression value measured by qRT-PCR is expressed as normalized expression. For each gene, only probe sets specific for gene transcript sequences have been analyzed.

Abbreviation: NA, not applicable.

The binding of IGF2 to IGF1R activates the intrinsic tyrosine kinase activity of IGF1R, which results in the phosphorylation of the insulin receptor substrates (IRS), leading to PI3K activation. Gene expression analysis of IRS1 and IRS2 revealed no alterations in IRS1. However, overexpression of IRS2 (n = 5) was detected in mutually exclusive pattern with IGF2 amplification or overexpression (Fig. 1A). All PI3KCA aberrations (n = 12) were oncogenic mutations, affecting all functional domains of the enzyme but with preferential mutation hotspots within exons 9 and 20, as previously described in colorectal cancer (13). PIK3R1 mutations have been rarely reported in colorectal cancer (2) and none were detected in the present PDX collection.

Two PDXs showed PTEN homozygous deletion associated with loss of protein expression, whereas no PTEN mutation was detected (Fig. 1C). Recently, another lipid phosphatase, inositol polyphosphate 4-phosphatase type II (INPP4B), has emerged as a potential tumor suppressor in prostate, breast, and ovarian cancers (14). Downregulation of INPP4B gene expression was detected here in two PDXs, with concomitant loss of protein expression. Immunohistochemical analyses confirmed mutual exclusion between PTEN and INPP4B downexpression (Fig. 1C).

Interestingly, a pattern of mutual exclusion in the PI3K pathway also exists between IGF2, IRS2, PIK3CA, PTEN, and INPP4B alterations. These data imply that therapeutic targeting of the IGF2 pathway could inhibit PI3K activity and suggest INPP4B as a tumor suppressor gene in colorectal cancer.

Mutations or gene amplification of candidate genes in the ERBB–RAS pathway was then analyzed. EGFR displayed no mutations but gene amplification associated with gene overexpression in two MSS PDXs. No mutation was identified in ERBB2, but one PDX showed ERBB2 amplification, accompanied by overexpression. Two PDXs displayed a T389I ERBB3 mutation, probably damaging (PolyPhen prediction software). No gene alteration was present in ERBB4.

We found that 69% (33 of 48) of MSS tumors and 100% (4 of 4) of MSI tumors have oncogenic alterations in KRAS, NRAS, or BRAF with a significant pattern of mutual exclusion (Fig. 1A). In accordance with published data, KRAS missense mutations in codons 12, 13, and 61 were the most frequent KRAS mutations (observed mutated in 18, 5 and two PDX models, respectively). Two additional PDXs showed two oncogenic KRAS mutations, K117N and A146T, previously reported in colorectal cancer with similar low frequencies (1, 15). Six PDXs displayed NRAS mutations, with all mutations occurring in codon 61. Six PDXs displayed BRAF mutations: four of these were the frequent hot-spot V600E mutation and two were less frequent mutations, D594N and G469A, already reported in colorectal cancer (16). BRAF V600E mutations were associated with MSI, as this mutation was present in 75% (3 of 4) of MSI tumors compared with 2% (1 of 48) of MSS tumors, (P < 0.0001, Yates χ2 test). BRAF V600E mutations were mutually exclusive from KRAS and NRAS mutations as usually described (16).

Finally, we observed no significant association of alterations in the RAS and PI3K pathways, suggesting that simultaneous inhibition of the RAS and PI3K pathways might be necessary for successful therapy in the subgroup displaying cooccurrence of these molecular alterations.

These genomic analyses enable an assessment of the diversity and the frequency of genomic changes altering these two major signaling pathways in our colorectal cancer PDX models and comparison with TCGA data (Fig. 2). TCGA has reported that 77% (23 of 30) of hypermutated tumors are MSI tumors (2). As the present PDX collection displays a low frequency of MSI tumors (4 of 52, 8%) close to that of patient tumors (23 of 224, 10%; ref. 2), we focused on MSS PDX and patient tumors. The frequency of studied molecular epidemiology data from these two groups showed remarkable concurrence, suggesting that the PDX bank represents a useful set of preclinical models for testing new therapies and emphasizing the potential therapeutic value of targeting IGF2 in colorectal cancer. In the same way, recent analyses by the Bodmer laboratory have shown that in vitro colorectal cancer cell lines provide useful preclinical tools because of well represented genetic diversity of patient tumors in cell lines (17, 18). It led us to an analysis of gene abnormalities specifically within IGF2–PI3K pathway in a large panel of 62 human colorectal cancer cell lines using the Broad–Novartis Cancer Cell Line Encyclopedia data (http://www.broadinstitute.org/ccle/home). We carefully separated MSS and MSI cell lines because of overpresentation of MSI cell lines, which could interfere with mutation frequencies. IGF2–PI3K pathway alterations appear almost mutually exclusive within the 36 MSS cell lines with some redundancy between PIK3CA activating mutations and IRS2 overexpression (Supplementary Fig. S1). Whereas PIK3CA, PTEN, and PIK3R1 aberration profiles recapitulate the patient tumor observation, the frequencies of IGF2 and IRS2 upregulation in MSS colorectal cancer cell lines are under- and overrepresented, respectively.

Figure 2.

Diversity and frequency of genetic changes leading to deregulation of IGF2–PI3K and ERBB–RAS signaling pathways in the colorectal cancer patient-derived xenograft panel compared with published human tumors. MSS xenografts were analyzed for somatic mutations (ERBB2, ERBB3, KRAS, NRAS, BRAF V600E, PIK3CA, PIK3R1), homozygous deletion (PTEN), amplifications (IGF2, ERBB2), and significant gene overexpression (IGF2, IRS2). Alteration frequencies are expressed as a percentage of the 50 MSS xenografts in blue. Data obtained in nonhypermutated patient tumor samples reported by TCGA (2) are noted in red.

Figure 2.

Diversity and frequency of genetic changes leading to deregulation of IGF2–PI3K and ERBB–RAS signaling pathways in the colorectal cancer patient-derived xenograft panel compared with published human tumors. MSS xenografts were analyzed for somatic mutations (ERBB2, ERBB3, KRAS, NRAS, BRAF V600E, PIK3CA, PIK3R1), homozygous deletion (PTEN), amplifications (IGF2, ERBB2), and significant gene overexpression (IGF2, IRS2). Alteration frequencies are expressed as a percentage of the 50 MSS xenografts in blue. Data obtained in nonhypermutated patient tumor samples reported by TCGA (2) are noted in red.

Close modal

In addition to maintaining the genomic and histologic heterogeneity, translationally relevant preclinical models need to reproduce drug response observed in patients. Although KRAS mutations had been identified as a strong predictive biomarker of resistance to cetuximab and panitumumab (3), only a subset of KRAS wild-type (WT) patients respond to anti-EGFR MAbs, underlining that additional predictive biomarkers exist within KRAS WT tumors. The characterization of alterations occurring in additional candidate genes (NRAS, BRAF, PIK3CA, PTEN) increased indeed the negative predictive value up to 70%, but it is not sufficient to identify all resistant cases (19).

To assess drug response prediction in our PDX models, cetuximab response was analyzed in the PDX panel. To be consistent with clinical criteria, we considered responders the PDXs displaying partial or complete response and nonresponders the PDXs displaying growth stabilization or progression (Supplementary Fig. S2). With these scoring criteria, eight out of 52 PDXs (15%) were responders to cetuximab, with complete tumor disappearance in three PDX models. The all eight responders were WT KRAS tumors (Figs. 1A and 3), outlining the requirement of WT KRAS genotype for clinical benefit. This low proportion of PDX responders in an unselected population (15%) is highly concordant with patient data (8) and PDX data from an independent metastatic colorectal cancer xenograft series (7). Noteworthy, cetuximab has been shown to be active against KRAS-mutated xenografts (6), leading to a statistically significant reduced tumor growth but with no tumor shrinkage. This kind of PDX response means nevertheless progressive disease from a clinical point of view. Therefore, assessment parameters have to be carefully analyzed to avoid over- or misinterpretation of drug efficacy.

Figure 3.

Graphic representation of the cohort of 52 colorectal xenografts treated with cetuximab. Molecular alterations mutually exclusive or coexisting are indicated according to different color codes.

Figure 3.

Graphic representation of the cohort of 52 colorectal xenografts treated with cetuximab. Molecular alterations mutually exclusive or coexisting are indicated according to different color codes.

Close modal

The majority of nonresponder PDXs (27 of 44) showed canonical activating mutations in KRAS (codons 12, 13, 61, 117, and 146). The Trusolino group reported similar results involving KRAS mutations in codons 61, 117, and 146 in primary resistance to cetuximab in a large and independent colorectal PDX series (7). While most clinical studies limited KRAS mutation assessment to codons 12–13, KRAS codon 61 and 146 mutations, in addition to NRAS and BRAF mutations, have also been shown in retrospective studies to predict resistance to cetuximab or panitumumab in WT KRAS codon 12 and 13 metastatic colorectal cancer (19, 20). The European Medicines Agency recently updates and restricts the indication for cetuximab to WT RAS metastatic colorectal cancer (not only WT KRAS codon 12–13).

Likewise, none of the four BRAF V600E–mutated, four NRAS-mutated, and four KRAS (codon 61, 117 or 146) mutated PDXs responded to cetuximab with tumor shrinkage. Therefore, exclusion of these mutations enables an improved selection of PDXs likely to respond to cetuximab, increasing the response rate from 28% (8 out of 29 12–13 codons KRAS WT) to 53% (8 of 15) in PDXs that are fully wild-type for all three genes, as reported retrospectively in patients (19, 20). This study functionally cross validates a recent clinical stratification based on combination of predictive biomarkers obtained retrospectively in patients (19). These data support the utility of our PDX panel for identifying predictors of drug response in metastatic colorectal cancer patients.

As for PTEN and PIK3CA impact, clinical data are more conflicting (8, 13, 19). In the present preclinical work, only PTEN homozygous deletion, leading to absolute PTEN inactivation, has been taken into account. This PTEN loss occurred within KRAS-mutated xenografts, displaying lack of response to cetuximab. Individual contribution of PIK3CA mutations to the absence of response is difficult to assess because of the PIK3CA mutation diversity in different protein domains and coexistence of these mutations with KRAS and BRAF mutations (13). Moreover, one PDX with IGF2 activation and two other PDXs with PIK3CA mutation respond to cetuximab. Among the five IGF2-overexpressed KRAS WT tumors, only one responds to cetuximab. Taken together, these data suggest that IGF2–PI3K components are not biomarkers of resistance to anti-EGFR therapies and underline the interest to combine anti-IGF2 and anti-EGFR treatment.

Within the group of 15 KRAS/BRAF/NRAS wild-type PDXs, further investigation has been performed for additional putative predictive biomarkers of resistance to anti-EGFR (8, 21): EGFR gene amplification, overexpression and mutation; gene overexpression of two EGFR ligands (epiregulin and amphiregulin), MET gene amplification and overexpression, KRAS gene amplification and HRAS mutation (Supplementary Table S1). Noteworthy, none of the patients with colorectal cancer, from whom the triple wild-type PDXs were derived, had been exposed to anti-EGFR therapy before surgery, ruling out the possibility of acquired resistance in the pretreated PDXs. The analysis of these parameters did not allow to statistically discriminating between the responder and nonresponder groups (Fisher exact test, P > 0.05). Nevertheless, it is noteworthy that cetuximab treatment was ineffective in mice engrafted with the three PDX models carrying KRAS amplification.

Collectively, the present data demonstrate the relevance of colorectal PDXs as models for preclinical drug development. The PDX models remarkably fit the molecular epidemiology and the cetuximab drug response profiles of colorectal cancer patient populations, justifying the growing use of mouse clinical trials in cancer drug development and decision making (5). More importantly, these data support the identification of KRAS (exon 2, 3, and 4)/NRAS/BRAF wild-type patients for treatment with cetuximab, and IGF2 as an attractive novel cancer drug target in a large subset of colorectal cancer patients.

P. Vrignaud is an employee of and is a stock holder of Sanofi. J. Watters is Head, Translational Medicine Oncology, at Sanofi. No potential conflicts of interest were disclosed by the other authors.

Conception and design: M. Nunes, I. Bièche, V. Dangles-Marie

Development of methodology: M. Nunes, S. Vacher, S. Richon, C. Dib, I. Bièche

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): P. Vrignaud, S. Vacher, S. Richon, W. Cacheux, L.-B. Weiswald, S. Chateau-Joubert, C. Dib, J. Watters, I. Bièche

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Nunes, P. Vrignaud, S. Vacher, A. Lièvre, W. Cacheux, G. Massonnet, S. Chateau-Joubert, W. Zhang, D. Bergstrom, I. Bièche, V. Dangles-Marie

Writing, review, and/or revision of the manuscript: M. Nunes, P. Vrignaud, S. Richon, A. Lièvre, W. Cacheux, L.-B. Weiswald, J. Watters, D. Bergstrom, S. Roman-Roman, I. Bièche, V. Dangles-Marie

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): A. Nicolas, V. Dangles-Marie

Study supervision: M. Nunes, P. Vrignaud, V. Dangles-Marie

We thank CReMEC consortium and especially Ludovic Lacroix, Ludovic Bigot, Fariba Nemati, Cyril Berthet and Olivier Duchamp for PDX tissues and nucleic acid managing and valuable discussions. Additional acknowledgments go to all the additional scientific collaborators from the “Institut Curie Digestive Group” led by Sylvie Robine. We thank Didier Meseure and Jean-Jacques Fontaine for help in histological analyses.

This work was supported by the Comité départemental des Hauts-de-Seine de la Ligue Nationale Contre le Cancer, the Conseil régional d'Ile-de-France, and the Cancéropôle Ile-de-France and the Association pour la recherche en cancérologie de Saint-Cloud (ARCS), Genevieve and Jean-Paul Driot Transformative Research Grant, Philippe and Laurent Bloch Cancer Research Grant, Hassan Hachem Translational Medicine Grant, and Sally Paget-Brown Translational Research Grant.

1.
Seshagiri
S
,
Stawiski
EW
,
Durinck
S
,
Modrusan
Z
,
Storm
EE
,
Conboy
CB
, et al
Recurrent R-spondin fusions in colon cancer
.
Nature
2012
;
488
:
660
4
.
2.
Network TCGA
. 
Comprehensive molecular characterization of human colon and rectal cancer
.
Nature
2012
;
487
:
330
7
.
3.
Lievre
A
,
Blons
H
,
Laurent-Puig
P
. 
Oncogenic mutations as predictive factors in colorectal cancer
.
Oncogene
2010
;
29
:
3033
43
.
4.
Dangles-Marie
V
,
Pocard
M
,
Richon
S
,
Weiswald
LB
,
Assayag
F
,
Saulnier
P
, et al
Establishment of human colon cancer cell lines from fresh tumors versus xenografts: comparison of success rate and cell line features
.
Cancer Res
2007
;
67
:
398
407
.
5.
Tentler
JJ
,
Tan
AC
,
Weekes
CD
,
Jimeno
A
,
Leong
S
,
Pitts
TM
, et al
Patient-derived tumour xenografts as models for oncology drug development
.
Nat Rev Clin Oncol
2012
;
9
:
338
50
.
6.
Julien
S
,
Merino-Trigo
A
,
Lacroix
L
,
Pocard
M
,
Goere
D
,
Mariani
P
, et al
Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer
.
Clin Cancer Res
2012
;
18
:
5314
28
.
7.
Bertotti
A
,
Migliardi
G
,
Galimi
F
,
Sassi
F
,
Torti
D
,
Isella
C
, et al
A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer
.
Cancer Discov
2012
;
1
:
508
23
.
8.
Bardelli
A
,
Siena
S
. 
Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer
.
J Clin Oncol
2010
;
28
:
1254
61
.
9.
Bieche
I
,
Parfait
B
,
Le Doussal
V
,
Olivi
M
,
Rio
MC
,
Lidereau
R
, et al
Identification of CGA as a novel estrogen receptor-responsive gene in breast cancer: an outstanding candidate marker to predict the response to endocrine therapy
.
Cancer Res
2001
;
61
:
1652
8
.
10.
Wood
LD
,
Parsons
DW
,
Jones
S
,
Lin
J
,
Sjoblom
T
,
Leary
RJ
, et al
The genomic landscapes of human breast and colorectal cancers
.
Science
2007
;
318
:
1108
13
.
11.
Zhang
L
,
Zhou
W
,
Velculescu
VE
,
Kern
SE
,
Hruban
RH
,
Hamilton
SR
, et al
Gene expression profiles in normal and cancer cells
.
Science
1997
;
276
:
1268
72
.
12.
Cui
H
,
Cruz-Correa
M
,
Giardiello
FM
,
Hutcheon
DF
,
Kafonek
DR
,
Brandenburg
S
, et al
Loss of IGF2 imprinting: a potential marker of colorectal cancer risk
.
Science
2003
;
299
:
1753
5
.
13.
Perrone
F
,
Lampis
A
,
Orsenigo
M
,
Di Bartolomeo
M
,
Gevorgyan
A
,
Losa
M
, et al
PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients
.
Ann Oncol
2009
;
20
:
84
90
.
14.
Agoulnik
IU
,
Hodgson
MC
,
Bowden
WA
,
Ittmann
MM
. 
INPP4B: the new kid on the PI3K block
.
Oncotarget
2011
;
2
:
321
8
.
15.
Wojcik
P
,
Kulig
J
,
Okon
K
,
Zazula
M
,
Mozdzioch
I
,
Niepsuj
A
, et al
KRAS mutation profile in colorectal carcinoma and novel mutation–internal tandem duplication in KRAS
.
Pol J Pathol
2008
;
59
:
93
6
.
16.
Samowitz
WS
,
Sweeney
C
,
Herrick
J
,
Albertsen
H
,
Levin
TR
,
Murtaugh
MA
, et al
Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers
.
Cancer Res
2005
;
65
:
6063
9
.
17.
Mouradov
D
,
Sloggett
C
,
Jorissen
RN
,
Love
CG
,
Li
S
,
Burgess
AW
, et al
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer
.
Cancer Res
2014
;
74
:
3238
47
.
18.
Wilding
JL
,
Bodmer
WF
. 
Cancer cell lines for drug discovery and development
.
Cancer Res
2014
;
74
:
1
8
.
19.
De Roock
W
,
Claes
B
,
Bernasconi
D
,
De Schutter
J
,
Biesmans
B
,
Fountzilas
G
, et al
Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis
.
Lancet Oncol
2012
;
11
:
753
62
.
20.
Oliner
KS
,
Douillard
JY
,
Siena
S
,
Tabernero
J
,
Burkes
RL
,
Barugel
ME
, et al
Analysis of KRAS/NRAS and BRAF mutations in the phase III PRIME study of panitumumab (pmab) plus FOLFOX versus FOLFOX as first-line treatment (tx) for metastatic colorectal cancer (mCRC)
.
J Clin Oncol
2013
;
31
:
abstract 3511
.
21.
Leto
SM
,
Trusolino
L
. 
Primary and acquired resistance to EGFR-targeted therapies in colorectal cancer: impact on future treatment strategies
.
J Mol Med
2014
;
92
:
709
.