Abstract
Deletion of tumor suppressor genes in stromal fibroblasts induces epithelial cancer development, suggesting an important role of stroma in epithelial homoeostasis. However, the underlying mechanisms remain to be elucidated. Here we report that deletion of the gene encoding TGF-ß receptor 2 (Tgfbr2) in the stromal fibroblasts (Tgfbr2fspKO) induces inflammation and significant DNA damage in the neighboring epithelia of the forestomach. This results in loss or down-regulation of cyclin-dependent kinase inhibitors p15, p16, and p21, which contribute to the development of invasive squamous cell carcinoma (SCC). Anti-inflammation treatment restored p21 expression, delayed tumorigenesis, and increased survival of Tgfbr2fspKO mice. Our data demonstrate for the first time that inflammation is a critical player in the epigenetic silencing of p21 in tumor progression. Examination of human esophageal SCC showed a down-regulation of TGFß receptor 2 (TßRII) in the stromal fibroblasts, as well as increased inflammation, DNA damage, and loss or decreased p15/p16 expression. Our study suggests anti-inflammation may be a new therapeutic option in treating human SCCs with down-regulation of TßRII in the stroma.
Citation Format: B.R Achyut, David Bader, Ana Robles, Wanga Darawarlee, Curtis Harris, Thomas Ried, Li Yang. Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. [abstract]. In: Abstracts: AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment; 2014 Feb 26-Mar 1; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(1 Suppl):Abstract nr B48. doi:10.1158/1538-7445.CHTME14-B48