Phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling is key to the control of many physiological and pathophysiological processes, and promotes cancer and inflammatory disease. Therefore, targeting of PI3K and/or mTOR pathways is currently explored in numerous clinical studies. PQR309 is a novel, brain penetrant, potent and selective pan-PI3K/mTOR inhibitor with PK properties suitable for once a day oral dosing in humans.

Structure activity relationship studies for PI3K and mTOR interactions are presented, including X-Ray analysis of PI3Kgamma co-crystal structures, modeling of PI3Kalpha and mTOR structures, and chemical derivatization. This led to the identification of PQR309 as a potent pan-PI3K and moderate mTOR inhibitor. PQR309 displays excellent selectivity versus PI3K-related lipid kinases (PIKKs) and protein kinases (KINOMEscan), as well as excellent selectivity versus unrelated targets (Cerep expresSProfile).

PQR309 features excellent cell permeability, and was characterized as a BCS class II compound due to its limited water solubility (40 μM). Moreover, PQR309 is not a substrate for P-glycoprotein 1 (P-gp). In A2058 melanoma cells PQR309 demonstrated inhibition of protein kinase B (PKB/Akt; pS473) and ribosomal protein S6 (S6, pSer235/236) phosphorylation with IC50 values of 0.13 μM and 0.58 μM, respectively. In IGF-stimulated MCF7 breast cancer cells, PQR309 at 1 μM inhibited phosphorylation of downstream substrates of PI3K including PKB/Akt, S6, p70S6 kinase, GSK3 and Bad by 60-95%. PQR309 inhibited proliferation of all 58 cell lines of the NCI60 panel (GI50 from 50 to 3300 nM), of the NTRC Oncoline panel (44 cell lines, GI50 from 100-6700 nM) and of a lymphoma cell line panel (40 lymphoma cell lines, GI50 from 25-1740 nM). A concise 4-step synthetic process utilizing a novel protective group strategy provides a robust and scalable supply of PQR309 for clinical trials.

In summary, PQR309 is a novel, potent, dual pan-PI3K/mTOR inhibitor with a balanced PI3K vs. mTOR profile, and displays excellent physico-chemical and pharmacological properties. The safety profile of PQR309 is currently addressed in Phase I clinical studies.

Citation Format: Vladimir Cmiljanovic, Natasa Cmiljanovic, Romina Marone, Florent Beaufils, Xuxiao Zhang, Marketa Zvelebil, Paul Hebeisen, Marc Lang, Juergen Mestan, Anna Melone, Thomas Bohnacker, Eugenio Gaudio, Chiara Tarantelli, Francesco Bertoni, Reto Ritschard, Vincent Pretre, Andreas Wicki, Doriano Fabbro, Petra Hillmann, Roger Williams, Bernd Giese, Matthias P. Wymann. PQR309: Structure-based design, synthesis and biological evaluation of a novel, selective, dual pan-PI3K/mTOR inhibitor. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2664. doi:10.1158/1538-7445.AM2015-2664