LB-356

Background: ADH-1 is a novel N-cadherin (Ncad) antagonist. Ncad is a protein present on certain tumor cells and established tumor blood vessels. Its expression on tumor cells increases as they become more aggressive, invasive and metastatic, making it an important target for anti-cancer therapy. ADH-1 was well tolerated in phase I studies and demonstrated evidence of anti-tumor activity in 7 patients whose tumors expressed Ncad. Patient enrollment in two phase II single agent trials concluded at the end of 2006. We report on the anti-tumor activity of ADH-1 in combination with paclitaxel in cancer cell lines in vitro and in the A2780 (Ncad positive) ovarian xenograft model in vivo. Methods: In vitro cytotoxicity of SKOV-3 (ovarian) cells exposed to a fixed ratio of ADH-1 and paclitaxel simultaneously was evaluated by the WST-1 cell proliferation assay. In vivo anti-tumor activity of ADH-1, paclitaxel, and the combination was evaluated in the A2780 xenograft model. ADH-1 100 mg/kg was administered bid IP for 21 days and paclitaxel was administered qod IV for 5 days. Results: In vitro cytotoxicity assays evaluated for combination effects using CalcuSyn software indicated a strong synergistic effect of ADH-1 in combination with paclitaxel (CI <1). In vivo paclitaxel treatment produced a median Time to Endpoint (TTE) (tumor volume >2gm or study end at 60 day) of 32.1 days and 73% Tumor Growth Delay (TGD), compared to control (p=0.028). For the paclitaxel group, there was only one Tumor Free Survivor (TFS) and one transient Complete Responder (CR). ADH-1 produced a TTE of 16.1 and a -13% TGD (p>0.05). The combination of ADH-1 and paclitaxel produced a median TTE of 48.6 days, corresponding to 161% TGD (p<0.0016 compared to untreated controls, p<0.003 for vehicle treated, and p<0.005 compared to paclitaxel alone). The combination therapy generated durable CR in 5 animals, 1 transient CR and 2 PR. The combination therapy had similar toxicity to paclitaxel alone. Conclusions: In this ovarian cancer model, the combination of ADH-1 with paclitaxel produced a synergistic anti-tumor effect. Based in part on these encouraging pre-clinical results, a clinical program of ADH-1 in combination with chemotherapeutic agents has been initiated.

98th AACR Annual Meeting-- Apr 14-18, 2007; Los Angeles, CA