Cyclooxygenase-2 (COX-2) is a key enzyme in the production of prostaglandins and thromboxanes from free arachidonic acid. Increasing evidence suggests that COX-2 plays a role in tumorigenesis. A variety of stimuli induce COX-2 and it is over-expressed in many tumors, including non-small cell lung cancer (NSCLC). We studied the regulation of COX-2 expression in immortalized human bronchial epithelial cells (HBECs) by transforming growth factor-β1 (TGF-β1) and epidermal growth factor (EGF) because these two growth factors are present in both the pulmonary milieu of those at risk for lung cancer as well as in the tumor microenvironment. EGF significantly enhanced TGF-β1-mediated induction of COX-2 and corresponding prostaglandin E2 (PGE2) production. TGF-β1 and EGF induced COX-2 at the transcriptional and post-transcriptional levels. EGFR inhibition, neutralizing antibody against amphiregulin, or MEK inhibition blocked TGF-β1 mediated COX-2 induction. COX-2 induction by TGF- β1 depended upon Smad3 signaling and required the activity of EGFR or its downstream mediators. Autocrine amphiregulin signaling maintains EGFR in a constitutively active state in HBECs, allowing for COX-2 induction by TGF-β1. Thus, EGFR ligands, which are abundant in the pulmonary microenvironment of those at risk for lung cancer, potentiate and are required for COX-2 induction by TGF-β1 in HBEC. These findings emphasize the central role of EGFR signaling in COX-2 induction by TGF-β1 and suggest that inhibition of EGFR signaling should be investigated further for lung cancer prevention.

98th AACR Annual Meeting-- Apr 14-18, 2007; Los Angeles, CA