5-Fluorouracil (5-FU) is the most common chemotherapeutic agent used in the treatment of colorectal cancer, yet objective response rates are low. Recently, camptothecin (CPT) has emerged as an effective alternative therapy. Decisive means to determine treatment, based on the likelihood of response to each of these agents, could greatly enhance the management of this disease. Here, the ability of cDNA microarray-generated basal gene expression profiles to predict apoptotic response to 5-FU and CPT was determined in a panel of 30 colon carcinoma cell lines. Genes whose basal level of expression correlated significantly with 5-FU- and CPT-induced apoptosis were selected, and their predictive power was assessed using a “leave one out” jackknife cross-validation strategy. Selection of the 50 genes best correlated with 5-FU-induced apoptosis, but not 50 randomly selected genes, significantly predicted response to this agent. Importantly, this gene expression profiling approach predicted response more effectively than four previously established determinants of 5-FU response: thymidylate synthase and thymidine phosphorylase activity; and p53 and mismatch repair status. Furthermore, reanalysis of the database demonstrated that selection of the 149 genes best correlated with CPT-induced apoptosis maximally and significantly predicted response to this agent. These studies demonstrate that the basal gene expression profile of colon cancer cells can be used to predict and distinguish response to multiple chemotherapeutic agents and establish the potential of this methodology as a means by which rational decisions regarding choice of therapy can be approached.

5-Fluorouracil (5-FU) has been the treatment of choice for both advanced colon cancer and adjuvant therapy for earlier disease, yet it is far from uniformly effective. Objective response rates for late-stage patients are approximately 20–30%, whereas only 20% of stage III patients who receive 5-FU-based adjuvant therapy show improved disease-free and overall survival (1, 2, 3, 4). Moreover, other drugs such as camptothecin (CPT) and oxaliplatin are effective alternative treatments (5, 6, 7, 8). The ability to predict response based on objective and quantifiable markers is therefore of importance for several reasons. First, patients unlikely to respond to a given therapy can be spared the toxicity, time, and expense associated with these treatment regimens and, more importantly, can be placed on alternate therapies. Second, because several chemotherapeutic agents induce the acquisition of drug resistance, administration of the agent likely to induce maximal response in the first course of treatment is critical to enhance treatment success. Finally, identification of markers that predict response may provide significant insight into the differences among tumors that establish different relative sensitivities to alternative therapies.

The identification of markers capable of predicting 5-FU response has been a subject of considerable interest (9). There is significant literature to suggest that the target of 5-FU, thymidylate synthase (TS), is an important predictor of response (9). For example, lower TS expression was associated with improved response to 5-FU in colorectal cancer patients with stage III and IV tumors (9, 10). In addition to TS, it has been reported that measurement of enzymes that affect the metabolism of 5-FU, including thymidine phosphorylase (TP) and dipyrimidine dehydrogenase, can also predict response (11, 12).

Several studies suggest p53 status is an important determinant of 5-FU sensitivity, with improved response and prolonged survival observed in patients with tumors wild-type (WT) for p53 (13, 14, 15). Similarly, it was recently demonstrated that tumors which retained heterozygosity at either 17p or 18q showed improved response to 5-FU-based adjuvant therapy (16). Other predictors of improved response include mismatch repair (MMR) status (17, 18) and the ratio of antiapoptotic:proapoptotic bcl-2 family members (19). In our own investigations, we have established that low-level amplification of c-myc was associated with longer overall survival in response to 5-FU-based adjuvant therapy (20). More recently, these findings were extended to demonstrate that tumors with amplification of c-myc, which also retained WT p53 function, had significantly improved response to 5-FU both in vitro and in vivo(21). A likely explanation for these findings was recently offered by Seoane et al.(22), who demonstrated that c-myc represses p53-induction of p21WAF1/cip1 after DNA damage, promoting the induction of apoptosis over cell cycle arrest, an observation we have recently confirmed in terms of response to CPT (23).

However, two major limitations exist in the utility of these limited numbers of markers for predicting chemotherapeutic response. First, for several of the markers described, conflicting reports also exist. For example, a number of studies have reported that TS levels fail to distinguish between patient groups with differential response to 5-FU (24, 25, 26, 27). Likewise, whereas TS is often overexpressed in 5-FU-resistant cells in vitro(28), studies of unselected panels of cell lines have failed to consistently show a correlation between intrinsic cellular TS levels and response (29, 30, 31). Contrasting findings have also been observed for p53 status (24) and for TP expression, with both high and low levels of TP linked to 5-FU response (11, 32, 33). Second, an approach that measures the ability of single markers to predict response to a specific agent generally fails to identify alternative treatment options.

The advent of high-throughput methodologies such as microarray-based gene expression profiling enables the transcriptional profile of a tumor sample to be determined on a global scale. A number of years ago, we suggested that such gene expression profiling could be fundamental in characterizing the phenotype of cells, including relative drug sensitivity of cancer cells (34, 35). Such gene expression profiling has the potential to probe more deeply into the factors that determine response to multiple drugs than a single assay. This in turn could reveal subtleties of mechanism that may be useful in identifying new drug targets, in discriminating among patients who show varying sensitivity to drugs, and in defining new treatment strategies, such as drug interactions that may be synergistic or antagonistic on a molecular level. The potential for gene expression profiling as a means toward prediction of response to chemotherapeutic agents is highlighted by its recent success in class discovery and prognosis in several cancer types (36, 37).

In this report, we approach this for colon cancer by defining 5-FU sensitivity for 30 colon carcinoma cell lines based on three different assays of response (growth inhibition, apoptosis, and clonogenicity) and linking this to the basal expression profile of >9000 sequences using a cDNA microarray approach. Gene sets were identified that show significant correlation with 5-FU sensitivity, and a formal statistical analysis (“leave one out” or jackknifing) was used to demonstrate that these genes are predictive for response. Importantly, this approach had greater power to predict response than four previously reported determinants of 5-FU response: TS and TP activities; and p53 and MMR status. The analysis was then repeated for sensitivity of the cell lines to CPT, a topoisomerase I inhibitor now commonly used in the treatment of colon cancer, and a second gene set, predictive for sensitivity to CPT, was identified. These experiments demonstrate that the basal gene expression profile of colon cancer cells can be used to predict response to chemotherapeutic agents and establish the potential of this approach as a means by which rational decisions regarding treatment of colon cancer can be approached.

Cell Lines and Cell Culture

The panel of colorectal cancer cell lines used were: Caco-2, Colo201, Colo205, Colo320, Dld-1, HCT116, HCT-15, HCT-8, HT29, LoVo, LS174T, RKO, SK-CO-1, SW1116, SW403, SW48, SW480, SW620, SW837, SW948, T84, and WiDr (all from American Type Culture Collection, Manassas, VA); HT29-Cl.16E and HT29-Cl.19A [from Dr. Laboisse; Institut National de la Recherche Medicale U539, Nantes, France (38)]; LIM1215 and LIM2405 [from Dr. Bob Whitehead; Ludwig Institute of Melbourne and Vanderbilt University, Nashville, TN (39, 40)]; HCC2998 and KM12 (from the National Cancer Institute-Frederick Cancer DCT Tumor Repository); and RW2982 and RW7213 (41). All cells were maintained in MEM supplemented with 10% fetal bovine serum (FBS), 1× antibiotic/antimycotic (100 units/ml streptomycin, 100 units/ml penicillin, and 0.25 μg/ml amphotericin B), 100 μm nonessential amino acids, and 10 mm HEPES buffer solution (all from Invitrogen Corp., Carlsbad, CA).

Determination of p53 and MMR Status

The p53 status of Caco-2, Colo201, Colo205, Colo320, HT29, KM12, SW620, SW480, Dld-1, LoVo, SK-CO-1, LS174T, WiDr, SW837, RKO, HCT8, HCT116, HCT15, HCC2998, and SW1116 has been reported previously (Table 3). The p53 status of LIM1215, LIM2405, RW2982, RW7213, SW403, SW948, and T84 was determined by polymerase chain reaction (PCR) amplification and sequencing of exons 5–8 of the p53 gene, the location of the majority of p53 mutations (42), and confirmed by measurement of p53 protein levels by Western blot analysis. Mutations in the p53 gene are often associated with increased levels of p53 protein due to conformational changes in the p53 polypeptide that result in increased stability (43). DNA from each cell line was isolated using the DNeasy kit (Qiagen, Valencia, CA) and used as the template for two different PCR reactions, one amplifying exons 5 and 6, and the other amplifying exons 7 and 8. The sequences of the primers used were as follows: Exon 5 Forward, GGAATTCTGTTCACTTGTGCCCTGACTTTAAC; Exon 6 Reverse, AGGGCCACTGACAACCACCCTTAAC; Exon 7 Forward, ACAGGTCTCCCCAAGGCGCACTGG; and Exon 8 Reverse, GGAATTCTGAGGCATAACTGCACCCTTGGTCT.

The LIM1215, LIM2405, SW948, SW403, SK-CO-1, SW48, and T84 cell lines were classified as p53 WT because no mutations were identified in the DNA sequence analysis of exons 5–8. For each of these cell lines, very low to undetectable p53 expression was detected by Western blotting, in comparison with known p53 mutant cell lines (data not shown). Mutations in the RW2982 (9-bp repeat in exon 5) and RW7213 (T to G substitution in codon 257, exon 7) cell lines were identified, and Western blotting revealed the presence of a prominent p53 band in these cell lines.

The MMR status of 27 of the 30 cell lines was derived from the literature (Table 1). The MMR status of LIM1215, LIM2405, and HCC2998 cells was assessed using five fluorescence-labeled microsatellite markers (The Bethesda Panel: BAT25; BAT26; D2S123; D5S346; and D17S250). Primer sequences have been reported previously (44). PCR reactions were carried out in a 10-μl reaction volume containing 50–100 ng of genomic DNA, 1× PCR buffer (Applied Biosystems, Foster City, CA), 250 μm each deoxynucleotide triphosphate, 0.5 μm each primer, and 1 unit of AmpliTaq Gold polymerase (Applied Biosystems). The MgCl2 concentration was 2.5 mm for BAT25 and 2.75 mm for BAT26, D2S123, D5S346, and D17S250. Predenaturation was performed at 95°C for 10 min, and final extension was performed at 72°C for 10 min in all reactions. PCR products were loaded on a 5% Long Ranger 6 m urea gel (FMC BioProducts, Rockland, ME) and run in an ABI PRISM 377 DNA Sequencer (Applied Biosystems) according to the manufacturer’s instructions. The data were collected automatically and analyzed by GeneScan 3.1 software (Applied Biosystems).

Measurement of Apoptosis

For analysis of apoptosis, cells were seeded in triplicate in 6-well plates. Seeding densities varied between 5 × 104 and 7.5 × 105 cells/well and were calculated such that control cell density approximated 80% confluence at the completion of the experimental period. Forty-eight h after seeding, cells were treated with 5, 50, or 500 μm 5-FU (Sigma, St. Louis, MO) or 1 μm CPT (Calbiochem, La Jolla, CA), for 72 h. Both attached and floating cells were harvested, washed in cold PBS, and resuspended in 50 μg/ml propidium iodide, 0.1% sodium citrate, and 0.1% Triton X-100. Cells were stained overnight at 4°C, and 10,000 cells were analyzed for DNA content using a Becton Dickinson FACScan (Becton Dickinson Immunocytometry Systems, San Jose, CA). The percentage of cells with a subdiploid DNA content was quantified using WinList 2.0 (Verity Software House, Topsahm, NE).

Growth Inhibition Assay

The concentration of 5-FU that induced 50% inhibition of control cell growth (GI50) was determined by staining cells with sulforhodamine B, according to the protocol used in the National Cancer Institute in vitro Anticancer Drug Discovery Screen Program (45, 46). Cells were seeded in 96-well plates at plating densities ranging from 5 × 103 to 5 × 104 cells/well. As for the apoptosis assay, seeding density was assessed for each cell line before experimentation to ensure control cell density did not exceed 80% confluence at the completion of the 72-h experimental period. Twenty-four h after plating, one plate of each cell line was fixed in situ with 10% trichloroacetic acid to measure the cell population at the time of drug addition (Tz). Cells in a parallel plate were treated with 0, 0.01, 0.1, 0.5, 1, 2.5, 5, 10, 25, 50, 100, and 500 μm 5-FU for 72 h. Cells were fixed and stained with sulforhodamine B [0.4% (w/v)] for 30 min, and GI50, which is the drug concentration that results in a 50% inhibition in the net protein increase relative to control cell growth, was calculated as described previously (45, 46).

Clonogenic Assay

Each cell line cultured in the growing phase was treated with 5, 50, or 500 μm 5-FU (Sigma) for 9 h. Medium was removed, and cells were harvested in trypsin, counted, and reseeded in triplicate in 6-well plates at a density of 500 cells/well. Colony formation was monitored over the following 1–3 weeks, depending on the cell line. When colonies were of sufficient size to enable clear visualization, cells were stained with 1% crystal violet for 30 min, washed with distilled water, air dried, and scanned using a Perfection 1250 flatbed scanner (Epson America Inc., Long Beach, CA). Colony formation was quantified by analysis of TIFF images using TotalLab 1.1 software (Nonlinear Dynamics, Durham, NC). Each cell line was assayed three times, each time in triplicate.

RNA Isolation and Preparation of Reference RNA

For isolation of RNA for cDNA microarray experiments, each cell line in the exponentially growing phase (60–80% confluence) was harvested in PBS, and pellets were snap frozen in liquid nitrogen. In each case, medium was changed 12 h before harvesting cells. RNA was isolated using the RNeasy kit (Qiagen). For preparation of the reference RNA, equal amounts of RNA were pooled from 12 cell lines (Caco-2, HT29, HT29 cl.19A, HT29 cl.16E, SW620, SW480, RKO, HCT116, LS174T, Dld-1, LoVo, and WiDr) grown to confluence.

Microarray Analysis

For all microarray hybridizations, 100 μg of RNA isolated from each cell line were labeled with Cy5 dUTP, and 100 μg of reference RNA were labeled with Cy3 dUTP. Probe preparation, hybridization conditions, and array scanning procedure were as described previously (47, 48). Arrays used in this report, encompassing 9216 sequences, were prepared by the microarray facility at the Albert Einstein College of Medicine (49). Signal and background intensities for each channel, at each spot on the microarray, were determined using Genepix Pro software (Axon Instruments, Union City, CA). Each spot was normalized by division of the ratio of red/green signal by the median ratio for the entire array and log transformed. For each cell line, microarrays were performed in duplicate using RNA isolated from two independent cell passages. For each set of replicates, the mean value for each sequence was determined and entered into a final database for further analyses.

Statistical Analyses

Normality Tests, Correlation Analyses, Comparison of Subgroups.

All 5-FU and CPT sensitivity data and TS and TP activity were tested for normality using a Shapiro-Wilk test (Proc univariate; SAS Procedures Guide Version 8; SAS Institute Inc., Cary, NC). Raw data not normally distributed were log (LN) transformed and reanalyzed for normality. Correlations between two normally distributed data sets were compared using a Pearson’s correlation analysis; otherwise, data were compared by Spearman’s correlation analysis. Comparisons between cell lines separated according to p53 or MMR status were made using a Mann-Whitney test.

Microarray Data.

Unsupervised cluster analysis of the cell lines was performed and displayed using the Cluster and Treeview programs of Eisen et al.(50). For functional Group analysis, named genes on the microarray were categorized into 1 or more of 50 functional categories, and functional group analysis was performed as described previously (48, 51).

“Leave One Out” or Jackknife Analysis.

The following text describes the stepwise procedure for the jackknife statistical analysis (52). All jackknife analyses were performed using genes that showed a significant level of expression above background in each of the 30 cell lines (3725 of the 9216 genes on the arrays). First, from the 30 cell lines, cell line 1 was removed from consideration, leaving 29 cell lines for analysis. For these 29 cell lines, the Pearson correlation between the level of expression of each of the 3725 genes and apoptosis induced by 5-FU or CPT was computed, and the N highest absolute value correlations (i.e., corresponding to N genes) were selected. N was varied from the 10–200 best-correlated genes. As a control, N randomly selected genes were also analyzed. To reduce the number of genes to a smaller set of variables, Principal Components Analysis (PCA) was performed. PCA enables a large number of variables to be reduced to linear combinations of variables that can be used to predict an outcome. From the PCA, the principal components (PCs) having the 10 largest eigenvalues were selected. In general, these 10 PCs accounted for approximately 60% of the variance in the selected genes. Next a multiple regression model was developed using the 10 PCs to predict apoptosis, based on the 29 cell lines in the analysis. Once the regression equation was derived, the 10 PCs corresponding to the “left out” cell line were computed and substituted into the derived regression equation to yield a prediction of apoptosis in the left out cell line. Thus, the final results for this first jackknife procedure were the predicted value of apoptosis for the left out cell line (y1*) and the observed value (y1).

After this first jackknife procedure was completed, the left out cell line was replaced in the dataset, and cell line 2 was removed, once again leaving 29 cell lines in the dataset with 1 cell line left out. The entire procedure was repeated, and this entire sequence of procedures was repeated for all 30 cell lines so that the final result was a set of predicted apoptosis values for each cell line that had been left out and the corresponding observed value. Each of these 30 jackknife procedures yielded 30 pairs of predicted and observed apoptosis values: y1*, y1, y2*, y2, …, y30*, y30.

To determine how well a given regression model predicted observed apoptosis in the left out cell line, the natural log of observed apoptosis [ln(yi)] was plotted as a function of the natural log of the predicted value [ln(yi*)], and a simple linear regression was constructed. The purpose of this regression analysis was to determine whether the predicted and observed values obeyed the equation yi = yi* (i.e., whether the points fall on the line of equality). If the prediction rule is true, then the observed and predicted values would be equal or nearly equal. The measure of linear fit was r, and the hypothesis of falling on the line of equality was tested by comparing the slope to unity and y intercept to zero.

Quantitative Real-Time PCR

The expression levels of 10 genes significantly correlated with 5-FU response were selected for further confirmation using quantitative real-time PCR. In addition to significant correlation with 5-FU response, the 10 genes selected were those with the greatest expression range across the panel of 30 cell lines. RNA aliquots (5 μg) from each cell line were reverse-transcribed using SuperScript II (Invitrogen). PCR primers for specific target genes were designed using Primer Express software (Applied Biosystems). cDNA (10 ng) from each cell line was amplified with specific primers using the SYBR green Core Reagents Kit and a 7900HT real-time PCR instrument (Applied Biosystems). Expression of each gene was standardized using glyceraldehyde-3-phosphate dehydrogenase as a reference, and relative levels of expression across the panel of cell lines were quantified by calculating 2−ΔΔCT, where ΔΔCT is the difference in CT (cycle number at which the amount of amplified target reaches a fixed threshold) between target and reference.

Measurement of TS and TP Activity

For both TS and TP activity, cell extracts were prepared by brief homogenization of cells on ice in Tris-mannitol buffer [50 mmd-mannitol, 2 mm Trizma base (pH 7.4), and 0.1% Triton X-100].

TS Activity.

TS was measured in cell extracts by measurement of [3H]2O release from [5-3H]dUMP in the presence of 5,10-methylenetetrahydrofolate (53). Each 150-μl assay contained 5–50 μg of protein extract, 50 mm Tris-HCl (pH 7.4), 10 μm [5-3H]dUMP (0.33 Ci/mmol), and 250 μm 5,10-methylenetetrahydrofolate and was incubated for 10 min at 37°C. Reactions were stopped by the addition of 0.8 ml of ice-cold 3% acid charcoal; after 10 min on ice, the samples were centrifuged (10 min at 10,000 rpm), and a 0.5-ml aliquot of the supernatant was assayed for radioactivity in a liquid scintillation spectrometer. Reactions were linear with respect to time and protein concentration and were dependent on reduced folate for activity.

TP Activity.

TP activity was measured in the supernatants of cell extracts (10–50 μg of protein) by incubation in 0.2 m KH2PO4 (pH 7.8) containing 0.2 mm [5′-3H]thymidine (Moravek), as described recently (54). In all cases, results were expressed relative to total protein.

Immunofluorescence

For immunofluorescence detection, cells were treated with 5 or 50 μm 5-FU for 24 h and fixed, prepared, and visualized as described previously (55). To detect mitochondria, a mouse monoclonal HSP60 antibody was used (1:200 dilution; Santa Cruz Biotechnology, Santa Cruz, CA), and binding was detected using a goat antimouse FITC-conjugated secondary antibody (Roche Diagnostics/Boehringer Mannheim Corp., Indianapolis, IN). Cytochrome c was detected using a mouse monoclonal anti-cytochrome c IgG (1:200 dilution; PharMingen, San Diego, CA), followed by exposure to a goat antimouse Cy5-conjugated secondary antibody (Amersham Biosciences, Piscataway, NJ). Bak was detected with a rabbit polyclonal IgG (1:100 dilution; Upstate Biotechnology, Lake Placid, NY) followed by exposure to a goat Cy3-conjugated antirabbit secondary antibody (Amersham). All secondary antibodies were used at a dilution of 1:200 with incubation for 1 h. The number of cells exhibiting Bak localization to the mitochondrial membrane and concurrent cytochrome c release, with and without exposure to 5 or 50 μm 5-FU, was quantified by examination of 200 cells in each of three independent experiments.

Microarray Database of 30 Colon Cancer Cell Lines.

To determine the efficacy with which the basal gene expression profile of colon cancer cells predicts response to chemotherapeutic agents, we assembled a panel of 30 established colon carcinoma cell lines. The basal gene expression profile of each cell line in the exponentially growing phase was determined in duplicate, by comparison with a reference RNA, using 9216-member cDNA microarrays.

To evaluate the reproducibility of our microarray database, the data for the 60 resulting arrays (each cell line in duplicate) were analyzed by unsupervised clustering, using the Cluster and Treeview programs (50). For 27 of the 30 cell lines, the duplicates (from independent experiments and different passages for the same cell lines) clustered together, illustrating the high degree of reproducibility of the microarray data (data not shown). For each cell line, the mean of the two replicates was computed and used in subsequent analyses. First, we selected genes that showed a significant level of expression above background in each of the 30 cell lines. A total of 3725 genes satisfied these criteria, which were used for subsequent analyses. Unsupervised hierarchical clustering of the 30 cell lines based on the expression levels of these 3725 genes revealed several important observations that emphasize the robust nature of this database (Fig. 1). First, the Colo201 and Colo205 cell lines, which were derived from the same patient, clustered together. Second, the HT29 cell line and three of its derivatives, HT29 cl.19A, HT29 cl.16E, and WiDr, clustered together. Third, the Dld-1 and HCT15 cell lines, which were derived from the same colon carcinoma by two independent researchers (56), clustered closely together. Finally, the SW480 and SW620 cell lines, which were generated from a primary and metastatic cancer from the same patient, respectively, also clustered together (Fig. 1). Previous gene expression profiling studies using large panels of cell lines have consistently demonstrated clustering of cell lines according to tissue of origin (31, 57, 58). In this study, the clustering of cell lines derived from the same patient demonstrates an additional degree of sensitivity of gene expression profiling and illustrates the ability of this technique to recognize the unique signatures that exist among individual patients, despite the common tissue origin of these tumors. In turn, should heterogeneity in gene expression be the basis for differences in response to 5-FU, it establishes the potential that these differences may be distinguishable by gene expression profiling.

Sensitivity of Cell Lines to 5-FU.

In parallel, the panel of 30 colon carcinoma cell lines was characterized for response to 5-FU-induced apoptosis by measurement of the percentage of cells with a subdiploid DNA content. This was done at three concentrations of 5-FU (5, 50, and 500 μm) and for a treatment period of 72 h. The data for 5 μm 5-FU are presented in Fig. 2,A, in which the 30 cell lines are rank-ordered according to sensitivity (also see Table 1). Resistance to 5-FU-induced apoptosis may be overestimated by this assay because exposure to this agent, particularly at higher doses, could result in nonspecific toxicity and thus in the failure of cells to undergo apoptosis. Therefore, the clonogenic potential of each cell line after 5-FU treatment was also assessed. As for apoptosis, a continuum of response was observed across the panel of cell lines. Fig. 2,B illustrates two representative cell lines showing high sensitivity to 5-FU (HCC2998 and HCT116) by this assay and two representative cell lines showing low sensitivity to 5-FU (SW620 and SW1116) by this assay (a summary of these data for the 30 cell lines is presented in Table 1). As a final measure of sensitivity, the effect of 5-FU on cell growth was assayed. Fig. 2,C illustrates the response of eight representative cell lines to varying concentrations of 5-FU, measured in two separate experiments, each time in quadruplicate. Two of the cell lines shown were relatively sensitive (HCT116 and HCC2998), two of these eight cell lines were relatively resistant (SW620 and SW1116), and the remaining four cell lines exhibited intermediate sensitivity to 5-FU (HCT8, HCT15, LS174T, and Caco-2). The data for the 30 cell lines, reflected as the GI50, are presented in Table 1. Importantly, significant correlations among 5-FU-induced apoptosis and GI50 (r = −0.39; P = 0.037), apoptosis and clonogenicity (r = −0.40; P = 0.028), and clonogenicity and GI50 (r = 0.42; P = 0.029) were observed among the three assays (values shown are Spearman’s correlation coefficient for the 5 μm 5-FU dose), illustrating that these assays identify closely related, but not necessarily identical, responses to 5-FU.

Identification of Genes Correlated with 5-FU Response.

To investigate the ability of the basal gene expression data to predict relative sensitivity to 5-FU-induced apoptosis, the correlation between the basal level of expression of each gene (3725 in total) and apoptotic response to 5 μm 5-FU was calculated for the 30 cell lines. Apoptosis induced by 5 μm 5-FU was selected because it was the closest concentration tested to the mean GI50 for the drug across the panel of cell lines (4.1 μm; Table 1) and is a concentration of 5-FU achievable in vivo(59, 60). Rank ordering of the absolute value of the correlation coefficients identified 420 genes whose expression was significantly correlated with 5 μm 5-FU-induced apoptosis (P < 0.05; Table 2). One hundred and sixty five of these correlated positively (higher expression in 5-FU-sensitive cells) with 5-FU-induced apoptosis, and 255 correlated negatively (higher expression in 5-FU-resistant cells) with 5-FU-induced apoptosis. To confirm the microarray data, the 10 most differentially expressed sequences in the gene list were selected, and their difference in expression across the panel of 30 cell lines was confirmed by quantitative real-time PCR. Significant correlation (r > 0.65; P < 0.005) between the microarray and RT-PCR data were observed for 9 of these 10 sequences (Table 2).

To determine whether this list was significantly enriched for genes with a role in specific biological processes, we performed a functional group analysis as described previously (48). Genes involved in two biological processes, DNA replication and repair (P = 0.02) and protein processing/targeting (P = 0.02), were significantly enriched for expression on the list of 420 genes significantly correlated with 5-FU response. This analysis was further confirmed using the Mappfinder software (Gladstone Institute, University of California San Francisco), which enables the visualization and estimation of enrichment of functionally related genes by linking microarray data to the Gene Ontology hierarchy (61, 62). Mappfinder also identified significant enrichment in genes involved in DNA replication (z-score, 2.22), protein targeting (z-score, 2.35), and protein folding (chaperones; z-score, 2.30).

Genes involved in DNA replication and repair included MLH1, PCNA, replication factor C, nucleosome assembly protein 1, origin recognition complex, and topoisomerase II. Importantly, each gene in this category was negatively correlated with 5-FU response, indicating higher expression levels in 5-FU resistant cells. Increased expression of topoisomerase II in 5-FU-resistant cells is consistent with a previous report in vivo(63). The second functionally related group of genes enriched for expression were those involved in protein processing and trafficking, including several chaperones. As for DNA replication and repair, the majority of these sequences were negatively correlated with 5-FU-induced apoptosis. Genes in this category included chaperonin containing TCP1 subunits 4 and 8, lectin mannose-binding 1, heat shock 70kDa protein 8, nucleophosmin, and hypoxia up-regulated 1. Chaperones protect cells from environmental stress by binding denatured proteins, dissociating protein aggregates, and regulating the correct folding and intracellular translocation of newly synthesized polypeptides (64). High basal levels of expression of these genes may enhance a cell’s ability to survive after 5-FU-induced genotoxic stress. Consistent with this role, nucleophosmin is up-regulated in colorectal carcinoma (65), is translocated from the nucleolus to the nucleoplasm after treatment with anticancer drugs (66), and has been associated with resistance to UV radiation-induced apoptosis (67).

We also identified three proapoptotic genes (Bak, TSSC3, and DAPK1) whose expression was positively correlated with 5-FU response, suggesting that their respective gene products may play a role in 5-FU-induced apoptosis. We chose to further explore the role played by Bak for two reasons. First, it is well established that proapoptotic members of the bcl-2 family, such as Bak, translocate from a predominantly cytoplasmic localization to mitochondria, where they trigger apoptosis through a mechanism dependent on release of cytochrome c(68). Second, Bak has previously been shown to be up-regulated in colon cancer cell lines treated with 5-FU (69).

Subcellular localization of Bak was examined with and without 5-FU treatment in four cell lines (RKO, HCT116, RW2982, and HCC2998) by immunofluorescence. Representative photomicrographs for the RKO cell line are shown in Fig. 3. In all cell lines examined, basal Bak expression was low and diffusely distributed. For the RKO cell line, treatment with 5 μm 5-FU for 24 h resulted in intense punctate staining for Bak in approximately 5% of cells (Fig. 3, B and D, white arrows). This was associated with its localization to the mitochondrion, as indicated by the overlap of Bak staining with the mitochondrial marker HSP60 (Fig. 3,B, yellow arrow). Co-staining of 5-FU-treated cells for Bak and cytochrome c demonstrated that mitochondrial Bak translocation was linked to diffuse cytoplasmic localization of cytochrome c, indicative of its release from the mitochondrion (Fig. 3 D, cytochrome c, white arrows). In contrast, in untreated cells, cytochrome c staining was always punctate; co-staining with HSP60 indicated that this was due to its mitochondrial localization (data not shown). Quantitation of this event demonstrated that a 24-h exposure to 5-FU induced a concentration-dependent increase in the number of RKO cells demonstrating simultaneous Bak translocation and cytochrome c release, compared with untreated cells [0.8 ± 0.4, 3.3 ± 0.6, and 8.7 ± 2.1/200 cells counted for 0, 5, and 50 μm 5-FU, respectively (mean ± SD); P < 0.005 for both 5 and 50 μm 5-FU compared with control (paired t test)]. Similar results were obtained for the HCT116, RW2982, and HCC2998 cell lines (data not shown). These results clearly indicate a role for Bak in mediating 5-FU-induced apoptosis and serve as validation for the array data.

Finally, it is noteworthy that expression of methylenetetrahydrofolate dehydrogenase, a gene involved in folate metabolism, was negatively correlated with the induction of apoptosis after 5-FU treatment (r = −0.46; Table 2). Methylenetetrahydrofolate dehydrogenase converts 5,10-methylene tetrahydrofolic acid (CH2-FH4) to 5,10-methynyl terahydrofolate. Because CH2-FH4 is required for the formation of the TS ternary complex by 5-fluoro-dUMP (an active metabolite of 5-FU), it follows that lower levels of an enzyme that could reduce the levels of CH2-FH4 would enhance the cytotoxic actions of 5-FU. Increased methylenetetrahydrofolate dehydrogenase has also been reported in 5-FU-resistant gastric tumor cell lines (70), and it is also of interest that genetic polymorphisms that reduced the activity of methylenetetrahydrofolate reductase, an enzyme that also utilizes CH2-FH4 as a substrate, were linked to improved response to 5-FU among patients with advanced colorectal cancer (71).

Predictive Value of Genes Correlated with 5-FU Response.

The concept behind gene profiling is that expression levels of multiple genes considered together may better predict phenotype than measurement of single markers. We hypothesized that gene expression profiling would therefore be a more effective means of predicting response to 5-FU than conventional single marker approaches. To determine whether this was the case for apoptotic response to 5 μm 5-FU, a “leave one out” or jackknife cross-validation approach was used, in which the predictive power of genes significantly correlated with 5-FU-induced apoptosis (described above) was tested. The primary objective of this statistical analysis was to develop a model that would predict level of apoptosis as a function of gene expression for multiple genes. The method used to develop this model utilized the jackknife technique (52), and its predictive value was validated on an independent observation.

In this approach, one cell line is omitted from the analysis, and a rule that predicts 5-FU response is derived based on the basal gene expression profile of the remaining 29 cell lines (see “Materials and Methods” for rule derivation). The predictive power of this rule is then tested on the cell line omitted at the start of the analysis. This process is repeated iteratively, on 30 separate occasions, with a different cell line omitted from each analysis.

Fig. 4,A illustrates the result of an analysis in which the 10 PCs of the 50 genes with the highest absolute correlation with 5 μm 5-FU-induced apoptosis were used to derive the predictor. The 30 data points in the figure are the observed apoptotic response for a given cell line versus the predicted value for the 30 jackknife calculations. For this analysis, the Pearson’s correlation coefficient between observed and predicted apoptosis was 0.47 (P = 0.008), formally demonstrating that selection of the 50 genes best correlated with 5 μm 5-FU response had excellent predictive value. In contrast, derivation of a predictor based on 50 randomly selected genes resulted in poor correlation between observed and predicted apoptosis (r = 0.099; P = 0.601; Fig. 4 B).

Whereas selection of the 50 most highly correlated genes was highly predictive for 5-FU response, we wished to determine the effect of varying the number of input genes (N) on the predictive power. To determine the optimum value of N, we repeated this analysis, varying N from the 10 to the 200 best-correlated genes for 5 μm 5-FU-induced apoptosis, for each jackknife calculation (Fig. 4,C). This analysis demonstrated that selection of anywhere from the 40–160 best-correlated genes resulted in significant correlation between observed and predicted apoptosis, with maximal prediction observed for 50 genes. In contrast, 10–200 randomly selected genes in each case failed to predict response to 5-FU (Fig. 4 D).

Repetition of these analyses using apoptosis induction by 5-FU at concentrations of 50 and 500 μm failed to identify gene sets capable of predicting response. However, at these higher concentrations, the continuum of apoptotic response across the panel of 30 cell lines is less pronounced because the majority of cell lines undergo significant apoptosis. In parallel, genes significantly correlated with apoptotic response tended to have less variation in expression range across the 30 cell lines and thus are less robust predictors of apoptotic response. Furthermore, except for brief periods of time after bolus administration, the 50 and 500 μm concentrations of 5-FU are 1–2 orders of magnitude greater than those achievable in vivo and may indicate that, due to toxicity, these concentrations of drug do not stimulate a complete biological response, thus decreasing the influence of a specific gene program on cellular response to this agent at these higher concentration.

Predictive Efficacy of TS and TP Activity and of p53 and MMR Status.

Having demonstrated the ability of the basal gene expression profile of colon carcinoma cells to predict response to 5-FU, we compared the efficacy of this approach with four previously established determinants of 5-FU response: TS and TP activity; and p53 (72) and MMR status (73, 74).

Levels of TS and TP have previously been linked to 5-FU response, with high and low activity of TS and TP, respectively, associated with 5-FU resistance. Measurement of TS and TP activities in the panel of 30 cell lines demonstrated that TS activity was negatively correlated with 5-FU-induced apoptosis, and TP activity was positively correlated with 5-FU-induced apoptosis, although this was not statistically significant for all concentrations of 5-FU tested (Fig. 5; Table 3). This link between low TS/high TP activity and enhanced 5-FU response is consistent with some (31), but not all, previous reports in which basal TS and TP levels in a panel of unselected cell lines have been correlated with 5-FU response (29, 30, 32). To determine the predictive efficacy of these markers on 5-FU-induced apoptosis, we used a jackknife approach similar to that used for the gene expression data. For these analyses however, only a single marker, basal TS or TP activity, was used to derive the rule. Prediction of apoptotic response using basal TS activity resulted in a weak correlation between observed and predicted 5-FU-induced apoptosis that was not statistically significant (r = 0.21 and P = 0.28, r = 0.07 and P = 0.70, and r = 0.23 and P = 0.23 for apoptosis induction at 5, 50, and 500 μm 5-FU, respectively; all values are log transformed). Likewise TP activity failed to predict response, except for apoptosis induction at the highest concentration of 5-FU tested (r = 0.11 and P = 0.56 and r = 0.06 and P = 0.77 for 5 and 50 μm 5-FU-induced apoptosis, respectively; and r = 0.45 and P = 0.01 for apoptosis induced at 500 μm 5-FU). Analyses for 5 μm 5-FU are shown in Fig. 6, A and B.

The relationship between p53 status of colon tumors and response to 5-FU has been examined extensively, both in vitro and in vivo, with conflicting findings reported (14, 24). The p53 status of the panel of 30 cell lines, some not reported previously, is shown in Table 1. As illustrated in Fig. 6 C, no significant difference in sensitivity to 5-FU-induced apoptosis was observed between p53 WT and mutant cell lines, despite a tendency of p53 WT cell lines to be more sensitive (P = 0.12, P = 0.14, and P = 0.12 for 5, 50, and 500 μm 5-FU, respectively).

Similar to p53, conflicting reports also exist regarding the effect of tumor MMR status on 5-FU response (17, 75, 76). The MMR status of the 30 cell lines is shown in Table 1. Comparison of the effect of 5-FU-induced apoptosis in 21 MMR-proficient and 9 MMR-deficient cell lines revealed no significant difference in 5-FU-induced apoptosis at any of the concentrations of 5-FU tested (Fig. 6 D).

Therefore, in summary, for the clinically relevant concentration of 5-FU (5 μm), gene expression profiling had greater predictive power than four previously reported determinants of 5-FU response.

Extension of Analysis to CPT.

A limitation of using single markers to predict response to specific agents is that they do not necessarily identify sensitivity to alternate treatment options. An assay capable of determining the treatment likely to be most effective for a particular tumor, therefore, would clearly have greater clinical benefit. To test this, we extended our analyses to the topoisomerase I inhibitor CPT, an alternative chemotherapeutic agent with proven efficacy in the treatment of colon tumors nonresponsive to 5-FU (77, 78), and determined whether the microarray database could be reanalyzed to predict relative response to CPT.

As described for 5-FU, the panel of 30 cell lines was characterized for response to CPT-induced apoptosis (Fig. 7). Fig. 7 illustrates the continuum of response of the panel of 30 cell lines to 1 μm CPT-induced apoptosis. No significant differences in CPT-induced apoptosis were observed when cell lines were separated according to p53 or MMR status (data not shown). Importantly, several cell lines relatively resistant to 5-FU exhibited sensitivity to CPT, and the converse was also true. These included Colo205 (rank order of apoptotic response, 7 versus 27 for 5-FU and CPT, respectively), HT29 cl.16E (rank order of apoptotic response, 14 versus 30 for 5-FU and CPT, respectively), and LIM1215 (rank order of apoptotic response, 23 versus 2 for 5-FU and CPT, respectively).

Correlation of gene expression with sensitivity to 1 μm CPT-induced apoptosis for the 30 cell lines identified 308 significantly correlated genes. Of these, 130 correlated positively and 178 correlated negatively with CPT-induced apoptosis (Table 4). Functional group analysis revealed that this gene list was significantly enriched for genes involved in the formation of membrane channels and in drug metabolism and resistance. Five of the seven genes involved in drug metabolism and resistance were negatively correlated with CPT response or more highly expressed in resistant cell lines. These included glutathione S-transferase M1 (r = −0.43), ATP-binding cassette, subfamily B (MDR/TAP), member 1(p-glycoprotein; r = −0.47), heparin sulfate (r = −0.38), glutaredoxin (r = −0.47), and 3′-phosphoadenosine 5′-phosphosulfate synthase 1 (r = −0.40).

The same jackknife approach used for 5-FU was then applied to the CPT data to determine whether profiles of gene expression capable of predicting response to this agent could be identified. The results of the analyses are summarized in Fig. 8, in which selection of the 10–200 genes best correlated with CPT-induced apoptosis revealed that selection of the 149 best-correlated sequences maximally predicted response to CPT (Fig. 8,A). As observed for 5-FU, 10–200 randomly selected genes failed to predict CPT response (Fig. 8 B). These results clearly demonstrate that the basal gene expression profile of a cell line can be used to predict differential response to multiple chemotherapeutic agents.

Importantly, whereas notable individual variations were identified in the response of the panel of 30 cell lines to 5 μm 5-FU and 1 μm CPT, the overall continuum of response to both agents was significantly correlated (r = 0.46; P = 0.01). Therefore, despite the two agents having different mechanisms of action (antimetabolite versus topoisomerase I inhibitor for 5-FU and CPT respectively), the overall response of cell lines to these mechanistically different agents was similar. Driven by this similarity, 32% and 24% of genes significantly correlated with CPT and 5-FU response, respectively, overlapped with the other agent. This finding suggests that whereas the activity of pathways specific to the mechanism of action of individual agents is undoubtedly important in determining response to a given agent, it is the activity of these pathways in the overall context of the cells ability to undergo apoptosis that is a major determinant of sensitivity.

Objective response rates to 5-FU-based chemotherapy, administered either in an adjuvant setting or to patients with late-stage colorectal cancer, are approximately 20–30%, yet this remains the treatment of choice as initial therapy. Significant attempts have been made to identify markers that predict response to 5-FU, with particular attention paid to enzymes involved in the actions of 5-FU, including TS, TP, and dipyrimidine dehydrogenase, as well as p53 and MMR status (10, 11, 12, 15, 18). Whereas several studies have demonstrated significant predictive efficacy for these markers, other studies have contradicted these findings (24, 25, 26). In the present study, we demonstrate the ability of basal gene expression profiling to predict response to 5-FU, using a panel of 30 colon carcinoma cell lines.

This study demonstrated several advantages of a gene expression profiling approach for prediction of 5-FU response. First, gene expression profiling outperformed four previously reported markers (TS and TP activity; p53 and MMR status) in predicting apoptotic response to 5-FU. Low TS and high TP expression, respectively, have previously been linked with improved sensitivity to 5-FU in vitro(31, 32). Consistent with these studies, in general, basal TS activity was negatively correlated with 5-FU-induced apoptosis, and basal TP activity was positively correlated with 5-FU-induced apoptosis. However, a jackknife analysis using TS or TP activity to predict 5-FU response demonstrated that these markers were less efficient at predicting response (r = 0.21 and P = 0.28 and r = 0.11 and P = 0.56 for TS and TP activity, respectively) than the gene expression profiling approach (r = 0.47, P = 0.008).

Likewise, no relationship between p53 and MMR status of the cell lines and response to 5-FU was observed. The lack of a significant difference in 5-FU response among p53 WT and mutant colon cancer cell lines is consistent with some previous reports in which a panel of cell lines has been studied (19). In contrast, however, use of isogenic cell systems has demonstrated that deletion of p53 from a p53 WT cell line (HCT116) results in marked resistance to 5-FU (79), whereas reintroduction of functional p53 into a p53 mutant colon cancer cell line significantly enhanced 5-FU-mediated cell killing (80). A similar disparity exists among in vivo studies in which some, but not others, have demonstrated improved 5-FU sensitivity in p53 WT tumors (13, 14, 15, 24). Use of an isogenic cell system has also demonstrated that MMR-deficient colon cancer cells are more resistant to 5-FU (73, 81). As for p53 status, however, studies in vivo have failed to consistently demonstrate a link between tumor MMR status and response to 5-FU (16, 17, 18, 74, 75). The present findings also reflect this lack of consistency for these markers in predicting sensitivity and support the concept that measurement of multiple, rather than single, markers may better predict 5-FU response.

A second advantage of gene expression profiling over single marker approaches is that predictors of response to each of multiple agents can potentially be determined from a single assay. In the present study, this was demonstrated for CPT, an alternative for treatment of tumors refractory to 5-FU (77, 78). Here, reanalysis of the same database used to predict response to 5-FU was able to identify a gene expression profile capable of predicting response to CPT.

For both 5-FU and CPT, a continuum of response in terms of induction of apoptosis was observed across the panel of 30 cell lines. This illustrates that simple classification of cell lines as sensitive or resistant to a given drug is a difficult process and that consideration of the relative magnitude of the response of a given cell line, or tumor, to multiple chemotherapeutic agents is likely to be a more practical approach. In this study, a jackknife cross-validation strategy demonstrated that selection of the 50 best-correlated genes with 5-FU response and the 149 best-correlated genes with CPT response maximally and significantly predicted response to each agent. Importantly, use of these gene expression profiles enables robust prediction of the magnitude of the apoptotic response to each of these agents, thereby adding an additional dimension to the predictive evaluation not afforded by dichotomous “yes” or “no” marker studies, such as p53 status.

Additionally, the ability to predict the likelihood of response to multiple agents could enhance the ability to determine whether single agents or combination therapies would be most appropriate for treatment of a specific tumor. The use of combination therapies is becoming increasingly common, and the ability to identify profiles of gene expression predictive of response to multiple agents in a given tumor could provide a basis for rational clinical decisions regarding the specific combination of therapies likely to result in maximal response and minimize avoidable toxicity.

Finally, the gene expression profiling approach identified a number of links between the mechanisms of action of chemotherapeutic agents and the likelihood of inducing a response. For example, a positive correlation between basal levels of Bak expression and sensitivity to 5-FU was identified. Furthermore, we demonstrated that 5-FU induced localization of Bak to the mitochondria, which was linked to release of cytochrome c. We also identified a significant negative correlation between the basal expression level of hypoxia inducible factor 1α (HIF1α) and sensitivity to 5-FU (Table 2). HIF1α is a transcription factor that is up-regulated under hypoxic conditions and plays a pivotal role in the adaptive response to hypoxia (82). There is evidence that hypoxia is associated with resistance to radiation therapy and chemotherapy (82), including 5-FU (83, 84). Although HIF1α is primarily regulated at the posttranslational level, transcription of HIF1α is also up-regulated under hypoxic conditions (85). It is possible that higher expression of HIF1α in 5-FU-resistant cell lines may serve as a surrogate marker of cellular redox status and, subsequently, sensitivity to 5-FU.

This study therefore demonstrates that the basal gene expression profile of a tumor can be used to predict probability of response to multiple chemotherapeutic options and can provide significant insight into underlying mechanisms. Our immediate challenge is to use similar analyses with resected tumor tissue or biopsy specimens. Such analyses will either confirm the predictive value of the gene sets for response to 5-FU and CPT or identify variations of the gene sets that may better predict clinical response. Collection of such gene expression/clinical data is ongoing at our institution. Because there are multiple strategies for analyzing the data, and there may be other investigators who have begun to accumulate gene expression data on colon cancer patient response and outcome to these as well as to other drugs, the entire gene expression data set for the 30 colon carcinoma cell lines is made available on our web site.5

Finally, in addition to gene expression profiling, considerable advances have now been made in other high-throughput profiling technologies, including mutation screening (Single Nucleotide Polymorphism analysis and complete genome hybridization), and proteomics. Combination of predictive gene sets identified by gene expression profiling with these methodologies may enhance the prediction of tumor response to chemotherapy and provide further insights into the molecular characterization of tumor cells.

Grant support: Supported in part by Grants UO1 CA88104, RO1 CA81328, and P30-13330 from the National Cancer Institute.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: John M. Mariadason, Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 East 210th Street, Bronx, New York 10467. Phone: (718) 920-2025; Fax: (718) 882-4464; E-mail: [email protected]

5

http://sequence.aecom.yu.edu/bioinf/Augenlicht/default.html.

Fig. 1.

Unsupervised clustering of the panel of 30 colon carcinoma cell lines based on 3725 genes with significant expression above background, in each of the 30 cell lines. Sets of cell lines derived from the same patient are shown in color.

Fig. 1.

Unsupervised clustering of the panel of 30 colon carcinoma cell lines based on 3725 genes with significant expression above background, in each of the 30 cell lines. Sets of cell lines derived from the same patient are shown in color.

Close modal
Fig. 2.

A, response of panel of 30 cell lines to 5-FU-induced apoptosis. Cells were treated with 5 μm 5-FU for 72 h, and apoptosis was determined by propidium iodide staining and fluorescence-activated cell-sorting analysis. B, clonogenicity of colon carcinoma cell lines after 5-FU treatment. Cell lines were treated with 5, 50, or 500 μm 5-FU for 9 h and reseeded in fresh medium, and colony formation was determined. Examples of four cell lines are shown. C, response of colon carcimona cell lines to 5-FU-induced growth inhibition (GI50). Examples of response of 8 of the 30 cell lines are shown.

Fig. 2.

A, response of panel of 30 cell lines to 5-FU-induced apoptosis. Cells were treated with 5 μm 5-FU for 72 h, and apoptosis was determined by propidium iodide staining and fluorescence-activated cell-sorting analysis. B, clonogenicity of colon carcinoma cell lines after 5-FU treatment. Cell lines were treated with 5, 50, or 500 μm 5-FU for 9 h and reseeded in fresh medium, and colony formation was determined. Examples of four cell lines are shown. C, response of colon carcimona cell lines to 5-FU-induced growth inhibition (GI50). Examples of response of 8 of the 30 cell lines are shown.

Close modal
Fig. 3.

5-FU induces localization of Bak to the mitochondria and release of cytochrome c. The RKO cell line was treated with 5-FU (5 μm) for 24 h (B and D) or left untreated (A and C). Cells were probed with an anti-Bak, anti-cytochrome c, or an antibody directed against the mitochondria-specific protein HSP60. C, 5-FU induction of Bak localization to mitochondria is illustrated by the colocalization of Bak with HSP60. D, localization of Bak to the mitochondria is associated with cytochrome c release, as illustrated by diffuse cytochrome c staining in cells with punctate Bak staining.

Fig. 3.

5-FU induces localization of Bak to the mitochondria and release of cytochrome c. The RKO cell line was treated with 5-FU (5 μm) for 24 h (B and D) or left untreated (A and C). Cells were probed with an anti-Bak, anti-cytochrome c, or an antibody directed against the mitochondria-specific protein HSP60. C, 5-FU induction of Bak localization to mitochondria is illustrated by the colocalization of Bak with HSP60. D, localization of Bak to the mitochondria is associated with cytochrome c release, as illustrated by diffuse cytochrome c staining in cells with punctate Bak staining.

Close modal
Fig. 4.

Gene expression profiling-based prediction of 5-FU-induced apoptosis. A, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses, using the 50 genes best correlated with 5 μm 5-FU-induced apoptosis. B, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses, using 50 randomly selected genes. C and D, determination of the optimal number of sequences for prediction of 5-FU response. The same jackknife procedure used in A was performed, except that the number of input genes used to derive the predictor was varied from the 10 through 200 genes best correlated with 5 μm 5-FU-induced apoptosis (C) or using 10–200 randomly selected genes (D). ∗, Pearson’s correlation coefficient > 0.36; P < 0.05.

Fig. 4.

Gene expression profiling-based prediction of 5-FU-induced apoptosis. A, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses, using the 50 genes best correlated with 5 μm 5-FU-induced apoptosis. B, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses, using 50 randomly selected genes. C and D, determination of the optimal number of sequences for prediction of 5-FU response. The same jackknife procedure used in A was performed, except that the number of input genes used to derive the predictor was varied from the 10 through 200 genes best correlated with 5 μm 5-FU-induced apoptosis (C) or using 10–200 randomly selected genes (D). ∗, Pearson’s correlation coefficient > 0.36; P < 0.05.

Close modal
Fig. 5.

TS and TP activity in the panel of 30 cell lines. Basal TS and TP activity was determined in cell lysates as described in “Materials and Methods.” Cell lines are rank-ordered according to increasing sensitivity to 5 μm 5-FU, as shown in Fig. 2 A.

Fig. 5.

TS and TP activity in the panel of 30 cell lines. Basal TS and TP activity was determined in cell lysates as described in “Materials and Methods.” Cell lines are rank-ordered according to increasing sensitivity to 5 μm 5-FU, as shown in Fig. 2 A.

Close modal
Fig. 6.

Predictive efficacy of (A) TS activity, (B) TP activity, (C) p53 status, and (D) MMR status of 5-FU-induced apoptosis. A and B, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses performed using (A) TS activity or (B) TP activity as the predictor of 5 μm 5-FU-induced apoptosis. C and D, cell lines were sorted according to (C) p53 or (D) MMR status and sensitivity to 5-FU-induced apoptosis compared using a Mann-Whitney test NS, no significant difference, P > 0.05.

Fig. 6.

Predictive efficacy of (A) TS activity, (B) TP activity, (C) p53 status, and (D) MMR status of 5-FU-induced apoptosis. A and B, Pearson’s correlation between observed and predicted apoptotic response for the 30 jackknife analyses performed using (A) TS activity or (B) TP activity as the predictor of 5 μm 5-FU-induced apoptosis. C and D, cell lines were sorted according to (C) p53 or (D) MMR status and sensitivity to 5-FU-induced apoptosis compared using a Mann-Whitney test NS, no significant difference, P > 0.05.

Close modal
Fig. 7.

Response of the panel of colon carcinoma cell lines to CPT-induced apoptosis. Cells were treated with 1 μm CPT for 72 h, and apoptosis was determined by propidium iodide staining and fluorescence-activated cell-sorting analysis.

Fig. 7.

Response of the panel of colon carcinoma cell lines to CPT-induced apoptosis. Cells were treated with 1 μm CPT for 72 h, and apoptosis was determined by propidium iodide staining and fluorescence-activated cell-sorting analysis.

Close modal
Fig. 8.

Predictive value of 10–200 genes best correlated with CPT response. Pearson’s correlation coefficient between observed and predicted response to CPT-induced apoptosis for the 30 jackknife analyses performed using (A) the 10–200 genes best correlated with 1 μm CPT-induced apoptosis or (B) 10–200 randomly selected genes. ∗, straight line, Pearson’s correlation coefficient > 0.36, P < 0.05.

Fig. 8.

Predictive value of 10–200 genes best correlated with CPT response. Pearson’s correlation coefficient between observed and predicted response to CPT-induced apoptosis for the 30 jackknife analyses performed using (A) the 10–200 genes best correlated with 1 μm CPT-induced apoptosis or (B) 10–200 randomly selected genes. ∗, straight line, Pearson’s correlation coefficient > 0.36, P < 0.05.

Close modal
Table 1

Summary of response of colon carcinoma cells to 5-FU

Cell linep53 status (ref. no.)MMR status (ref. no.)Apoptosis (5-FU)Clonogenicity (5-FU)Growth inhibition GI50m)
Control5 μm50 μm500 μm5 μm50 μm500 μm
Caco-2 MUT (86) + (87) 6.8 14.5 16.4 21.9 0.99 0.62 0.10 3.1 
Colo201 MUT (88) + (87) 1.7 1.7 1.1 33.1 ND ND ND 2.1 
Colo205 MUT (89) + (87) 0.7 2.4 1.9 59.1 ND ND ND 1.5 
Colo320 MUT (90) + (87) 1.6 1.6 2.3 2.3 ND ND ND 1.5 
DLD-1 MUT (91) − (87) 0.9 1.0 1.4 23.5 0.98 0.53 0.12 1.3 
HCC2998 MUT (89) +b 7.9 47.9 41.6 44.9 0.65 0.27 0.05 1.2 
HCT116 WT (89) − (87) 3.9 15.7 69.9 86.6 0.88 0.29 0.07 0.7 
HCT15 MUT (90) − (87) 0.6 1.1 2.2 11.8 1.02 1.08 0.28 3.1 
HCT8 WT (92) + (87) 0.9 1.1 1.2 35.1 1.03 0.91 0.56 2.8 
HT29 MUT (91) + (87) 5.9 7.8 14.2 57.6 0.95 0.72 0.10 4.2 
HT29 cl. 19A MUTa +a 2.8 13.5 16.1 24.5 0.77 0.49 0.12 0.9 
HT29 cl. 16E MUTa +a 2.1 5.9 9.3 35.3 0.87 0.69 0.16 1.3 
KM12 MUT (89) − (93) 1.7 17.7 26.8 71.8 0.33 0.02 0.00 1.3 
LIM1215 WTb b 1.3 14.9 4.3 40.3 0.66 0.09 0.03 3.0 
LIM2405 WTb +b 1.2 19.4 16.5 77.2 0.75 0.44 0.12 0.9 
LoVo WT (90) − (87) 2.9 2.5 4.0 49.3 0.94 0.82 0.31 2.0 
LS174T WT (91) − (87) 6.1 5.1 2.6 12.5 1.14 0.71 0.09 5.5 
RKO WT (94) − (93) 0.8 14.5 43.7 49.8 0.95 0.33 0.06 0.8 
RW2982 MUTb + (95) 9.8 46.0 58.5 76.6 1.09 0.48 0.07 1.6 
RW7213 MUTb + (95) 2.9 4.2 3.5 58.9 0.89 0.40 0.17 18.1 
SK-CO-1 WTc + (87) 6.4 7.0 9.1 13.8 0.78 0.49 0.06 2.7 
SW1116 MUT (90) + (95) 1.6 3.1 2.4 5.0 1.03 0.82 0.46 19.5 
SW403 WTb + (87) 2.9 52.0 54.2 70.6 0.68 0.33 0.13 0.7 
SW48 WT (96) − (87) 3.5 9.1 12.8 31.9 0.98 0.87 0.28 4.6 
SW480 MUT (91) + (87) 3.6 4.4 8.0 19.5 0.89 0.66 0.21 10.7 
SW620 MUT (91) + (87) 1.0 3.2 1.6 3.2 1.04 0.97 0.86 23.1 
SW837 MUT (91) + (87) 1.4 2.3 1.9 5.1 0.98 0.43 0.25 0.8 
SW948 WTb + (87) 7.0 31.7 27.3 58.7 1.03 0.62 0.07 1.4 
T84 WTb + (87) 3.8 6.0 5.7 40.2 0.93 0.58 0.07 2.6 
WiDr MUT (91) + (87) 3.4 9.3 4.9 38.4 1.05 0.63 0.27 1.3 
           
Mean   3.2 12.2 15.5 38.6 0.90 0.57 0.19 4.1 
SD   2.5 14.2 19.2 24.4 0.17 0.26 0.19 5.9 
P    <0.001 <0.001 <0.001 0.006 <0.001 <0.001  
Cell linep53 status (ref. no.)MMR status (ref. no.)Apoptosis (5-FU)Clonogenicity (5-FU)Growth inhibition GI50m)
Control5 μm50 μm500 μm5 μm50 μm500 μm
Caco-2 MUT (86) + (87) 6.8 14.5 16.4 21.9 0.99 0.62 0.10 3.1 
Colo201 MUT (88) + (87) 1.7 1.7 1.1 33.1 ND ND ND 2.1 
Colo205 MUT (89) + (87) 0.7 2.4 1.9 59.1 ND ND ND 1.5 
Colo320 MUT (90) + (87) 1.6 1.6 2.3 2.3 ND ND ND 1.5 
DLD-1 MUT (91) − (87) 0.9 1.0 1.4 23.5 0.98 0.53 0.12 1.3 
HCC2998 MUT (89) +b 7.9 47.9 41.6 44.9 0.65 0.27 0.05 1.2 
HCT116 WT (89) − (87) 3.9 15.7 69.9 86.6 0.88 0.29 0.07 0.7 
HCT15 MUT (90) − (87) 0.6 1.1 2.2 11.8 1.02 1.08 0.28 3.1 
HCT8 WT (92) + (87) 0.9 1.1 1.2 35.1 1.03 0.91 0.56 2.8 
HT29 MUT (91) + (87) 5.9 7.8 14.2 57.6 0.95 0.72 0.10 4.2 
HT29 cl. 19A MUTa +a 2.8 13.5 16.1 24.5 0.77 0.49 0.12 0.9 
HT29 cl. 16E MUTa +a 2.1 5.9 9.3 35.3 0.87 0.69 0.16 1.3 
KM12 MUT (89) − (93) 1.7 17.7 26.8 71.8 0.33 0.02 0.00 1.3 
LIM1215 WTb b 1.3 14.9 4.3 40.3 0.66 0.09 0.03 3.0 
LIM2405 WTb +b 1.2 19.4 16.5 77.2 0.75 0.44 0.12 0.9 
LoVo WT (90) − (87) 2.9 2.5 4.0 49.3 0.94 0.82 0.31 2.0 
LS174T WT (91) − (87) 6.1 5.1 2.6 12.5 1.14 0.71 0.09 5.5 
RKO WT (94) − (93) 0.8 14.5 43.7 49.8 0.95 0.33 0.06 0.8 
RW2982 MUTb + (95) 9.8 46.0 58.5 76.6 1.09 0.48 0.07 1.6 
RW7213 MUTb + (95) 2.9 4.2 3.5 58.9 0.89 0.40 0.17 18.1 
SK-CO-1 WTc + (87) 6.4 7.0 9.1 13.8 0.78 0.49 0.06 2.7 
SW1116 MUT (90) + (95) 1.6 3.1 2.4 5.0 1.03 0.82 0.46 19.5 
SW403 WTb + (87) 2.9 52.0 54.2 70.6 0.68 0.33 0.13 0.7 
SW48 WT (96) − (87) 3.5 9.1 12.8 31.9 0.98 0.87 0.28 4.6 
SW480 MUT (91) + (87) 3.6 4.4 8.0 19.5 0.89 0.66 0.21 10.7 
SW620 MUT (91) + (87) 1.0 3.2 1.6 3.2 1.04 0.97 0.86 23.1 
SW837 MUT (91) + (87) 1.4 2.3 1.9 5.1 0.98 0.43 0.25 0.8 
SW948 WTb + (87) 7.0 31.7 27.3 58.7 1.03 0.62 0.07 1.4 
T84 WTb + (87) 3.8 6.0 5.7 40.2 0.93 0.58 0.07 2.6 
WiDr MUT (91) + (87) 3.4 9.3 4.9 38.4 1.05 0.63 0.27 1.3 
           
Mean   3.2 12.2 15.5 38.6 0.90 0.57 0.19 4.1 
SD   2.5 14.2 19.2 24.4 0.17 0.26 0.19 5.9 
P    <0.001 <0.001 <0.001 0.006 <0.001 <0.001  

p53 and MMR status, and response to 5-FU induced apoptosis, growth inhibition (Gl50) and clonogenicity in the panel of 30 colon carcinoma cell lines. p53 and MMR status of the cell lines were obtained from the literature (reference), by inference from the p53 and MMR status of the parental (HT29) cell line (a), as described in “Materials and Methods” (b), or online at http://www.cephb.fr/gaccc/table2.php (c). Abbreviations used are MMR+ (mismatch repair proficient), and MMR- (mismatch repair deficient). For 5-FU induced apoptosis, GL50, and clonogenicity, values shown are the mean of three independent experiments, each performed in triplicate. Clonogenicity following 5-FU treatment was not determined (ND) in the three nonadherent cell lines. Pvalue shown is the result of a paired ttest, in which apoptosis induction at 5, 50 or 500 μM 5-FU was compared to control.

Table 2A

Genes correlated with 5 μm 5-FU-induced apoptosis

Positively correlated genes
AccessionCorrelGene nameFunction
N52651 0.62 EST*a Unknown 
AA022679 0.61 EST*a Unknown 
H68885 0.58 TSSC3 (tumor supp. subtrans. cand 3)* Apoptosis 
R93069 0.58 EST Unknown 
N26536 0.57 ATPase, Cu2+ transporting, β polypeptide Ion channels 
N36174 0.57 5-Hydroxytryptamine (serotonin) receptor 2B G-protein signaling 
AA621761 0.56 EST Unknown 
AA456595 0.54 EST Unknown 
W94295 0.53 EST Unknown 
T58775 0.53 Chemokine (C-C motif) ligand 16* Chemotaxis 
AA702640 0.53 Dopa decarboxylase Amino acid bioch. 
AA449289 0.53 Smoothelin Cytoskeleton 
AA022601 0.52 EST Unknown 
H51438 0.51 EST Unknown 
R35051 0.51 α-Methylacyl-CoA racemase Lipid biology 
N20968 0.50 EST Unknown 
AA989217 0.50 Ca2+-promoted Ras inactivator* Unknown 
AA401883 0.50 Sialidase 1 (lysosomal sialidase) Glycoprotein modif. 
N20072 0.50 Ribose 5-phosphate isomerase A Pentose phos. path 
H63865 0.49 EST Unknown 
AA457485 0.49 EST Unknown 
AA677706 0.49 Lactotransferrin Endopeptidase 
R70888 0.49 EST* Unknown 
W04706 0.49 EST Unknown 
N90783 0.49 Purinergic receptor (family A group 5)* Unknown 
AA427782 0.49 Cation-chloride cotransporter-interacting protein Ion channels 
AA136666 0.49 EST Unknown 
N92048 0.48 EST Unknown 
AA677403 0.48 Glycoprotein hormones, α polypeptide Cell-cell signaling 
R35892 0.48 EST Unknown 
N73301 0.48 EST Unknown 
AA453994 0.47 EST Unknown 
AA133167 0.47 EST Unknown 
T95262 0.46 Translocation protein 1 Memb. targeting 
W56760 0.46 EST Unknown 
AA431429 0.46 EST Unknown 
AA149287 0.46 EST Unknown 
N50904 0.46 EST Unknown 
W87826 0.46 EST Unknown 
W92233 0.46 EST Unknown 
W51795 0.46 Heat shock 27-kDa protein 2 Heat shock resp. 
H59559 0.46 EST* Unknown 
R28303 0.46 EST Unknown 
T98717 0.46 EST Unknown 
W89074 0.45 EST Unknown 
W02624 0.45 EST Unknown 
AA496002 0.45 EST Unknown 
T51024 0.45 Diphosphate dimethylallyl diphosph. isomerase 2 Unknown 
H52673 0.45 Bak Apoptosis 
AA682399 0.45 Angiogenin, ribonuclease, RNase A family, 5 RNA processing 
AA701545 0.45 Ribonuclease, RNase A family, k6 RNA processing 
N70057 0.45 Leukocyte-specific transcript 1* Defense/immunity 
W47387 0.45 EST* Unknown 
AA404479 0.45 Mitogen-activated protein kinase 14 Signal trans/stress 
AA011598 0.44 EST Unknown 
N63032 0.44 EST* Unknown 
AA147202 0.44 A kinase (PRKA) anchor protein 13 Signal transduction 
AA464708 0.44 Eukaryotic translation initiation factor 2, subunit 3 Protein synthesis 
N51226 0.43 EST Unknown 
T51539 0.43 EST Unknown 
W85876 0.43 EST* Unknown 
H42894 0.43 EST* Unknown 
AA453273 0.43 U6 snRNA-associated Sm-like protein RNA process/splice 
H87770 0.43 EST Unknown 
W61361 0.43 SERPINB8 Protease inhibitor 
R64190 0.43 Arginyl aminopeptidase Protein modification 
T50788 0.43 UDP glycosyltransferase 2 family, polypep. B15 Xenobiotic metab. 
T55337 0.43 EST Unknown 
AA490680 0.42 Transcobalamin II; macrocytic anemia* Vitamin transport 
AA460950 0.42 SMARCAL1 Transcription 
R95893 0.42 EST Unknown 
T82948 0.42 EST Unknown 
W47158 0.42 Engulfment and cell motility 2* Unknown 
AA676234 0.42 EST Unknown 
N64840 0.42 Folate hydrolase Folate uptake 
AA975384 0.42 KCNA5 Ion channels 
AA131466 0.42 EST Unknown 
R08261 0.42 EST Unknown 
W72227 0.42 EST* Unknown 
W88801 0.42 EST Unknown 
AA598836 0.42 Cullin 4A Tumor suppressor 
R52797 0.42 Hepatocyte growth factor* Growth factor 
AA476263 0.42 Phosphorylase kinase β Glycogen metab. 
AA453288 0.42 EST* Unknown 
AA454584 0.41 EST* Unknown 
AA136699 0.41 EST Unknown 
AA454691 0.41 Trinucleotide repeat containing 5 Unknown 
AA009671 0.41 EST Unknown 
T57540 0.41 EST Unknown 
AA486790 0.41 Cullin 1 Tumor suppressor 
AA490263 0.41 NIMA-related kinase 3 Cell proliferation 
W93482 0.41 EST Unknown 
T60109 0.41 RAB40B, member RAS oncogene family Unknown 
T95815 0.41 EST Unknown 
AA455301 0.41 GPAA1P anchor attachment protein 1 homolog Protein modification 
AA157499 0.41 Mitogen-activated protein kinase 13* Sig trans/stress 
T53022 0.41 EST Unknown 
H01039 0.40 EST Unknown 
AA702544 0.40 EST Unknown 
R98070 0.40 EST Unknown 
AA680300 0.40 Dipeptidylpeptidase 7 Peptidase 
R09890 0.40 EST Unknown 
AA054421 0.40 Tripartite motif-containing 31 Unknown 
AA256386 0.40 START domain containing 13 Unknown 
H99394 0.40 EST Unknown 
H77714 0.40 EST* Unknown 
AA004321 0.40 EST* Unknown 
R52934 0.40 EST Unknown 
AA486275 0.40 Ser/Cyst prot. inhib. clade B, memb. 1* Protease Inhib. 
AA620755 0.40 EST Unknown 
AA142943 0.40 Downstream of tyrosine kinase 1 Signal transduction 
N70632 0.40 Alcohol dehydrogenase 8 Redox regulation 
T51895 0.40 EphB4* Memb. Prot. 
AA022935 0.40 EST Unknown 
AA024866 0.40 EST Unknown 
W81196 0.40 CDC42 effector protein (Rho GTPase binding) 2 Unknown 
AA029703 0.39 EST Unknown 
N72128 0.39 ESTa Unknown 
N57872 0.39 Alanine-glyoxylate aminotransferase Amino acid bioch. 
AA872397 0.39 Lectin, galactoside-binding, soluble, 2 Sugar binding 
N72116 0.39 Solute carrier family 11, member 2* Transport 
AA610111 0.39 EST Unknown 
AA448094 0.39 EST Kinase 
H99479 0.39 Sec23-interacting protein p125 Protein transport 
R89765 0.39 EST Unknown 
W92045 0.38 EST Unknown 
AA458533 0.38 Forkhead box J1 Transcription 
T95234 0.38 EST Unknown 
AA005115 0.38 EST Unknown 
AA490300 0.38 PDGFA-associated protein 1 Cell proliferation 
AA872379 0.38 SMT3 suppressor of mif two 3 homolog 1 C’some seg/repair 
H61059 0.38 EST Unknown 
AA521015 0.38 EST Unknown 
AA410604 0.38 CDC16 cell division cycle 16 homolog C’some seg/repair 
AA176819 0.38 EST Unknown 
AA416665 0.38 MUM2 protein Unknown 
AA046700 0.38 F-box only protein 32* Protein degradation 
R02173 0.38 EST Unknown 
W31675 0.38 EST Unknown 
AA287196 0.38 Tetraspan 3 Cell adhesion 
H59093 0.37 EST Unknown 
W60647 0.37 EST Unknown 
AA025275 0.37 Death-associated protein kinase 1 Apoptosis 
AA455507 0.37 WBSCR20B Unknown 
AA680186 0.37 Chemokine (C-C motif) ligand 19 Chemotaxis 
AA620746 0.37 EST* Unknown 
R73500 0.37 Ribose 5-phosphate isomerase A Pentose phos path 
N72185 0.37 EST Unknown 
AA460369 0.37 EST Unknown 
AA191510 0.37 EST Unknown 
H27554 0.37 Progestin induced protein protein degradation 
W80688 0.37 EST Unknown 
W95082 0.37 Hydroxysteroid (11-β) dehydrogenase 2 Glucocort. biosynth 
AA609774 0.36 EST* Unknown 
N23399 0.36 EST* Unknown 
H78002 0.36 EST Unknown 
AA431179 0.36 Nucleotide-sugar transporter similar to sqv-7 Transport 
H94903 0.36 EST Unknown 
AA452988 0.36 Angio-associated, migratory cell protein Cell motility 
N79813 0.36 EST Unknown 
N29639 0.36 CMAH Unknown 
AA633882 0.36 GCN5-like 1* Transcription 
R61337 0.36 NY-REN-25 antigen Unknown 
N75569 0.36 EST* Unknown 
AA701976 0.36 Inositol 1,4,5-triphosphate receptor, type 3 Signal transduction 
Positively correlated genes
AccessionCorrelGene nameFunction
N52651 0.62 EST*a Unknown 
AA022679 0.61 EST*a Unknown 
H68885 0.58 TSSC3 (tumor supp. subtrans. cand 3)* Apoptosis 
R93069 0.58 EST Unknown 
N26536 0.57 ATPase, Cu2+ transporting, β polypeptide Ion channels 
N36174 0.57 5-Hydroxytryptamine (serotonin) receptor 2B G-protein signaling 
AA621761 0.56 EST Unknown 
AA456595 0.54 EST Unknown 
W94295 0.53 EST Unknown 
T58775 0.53 Chemokine (C-C motif) ligand 16* Chemotaxis 
AA702640 0.53 Dopa decarboxylase Amino acid bioch. 
AA449289 0.53 Smoothelin Cytoskeleton 
AA022601 0.52 EST Unknown 
H51438 0.51 EST Unknown 
R35051 0.51 α-Methylacyl-CoA racemase Lipid biology 
N20968 0.50 EST Unknown 
AA989217 0.50 Ca2+-promoted Ras inactivator* Unknown 
AA401883 0.50 Sialidase 1 (lysosomal sialidase) Glycoprotein modif. 
N20072 0.50 Ribose 5-phosphate isomerase A Pentose phos. path 
H63865 0.49 EST Unknown 
AA457485 0.49 EST Unknown 
AA677706 0.49 Lactotransferrin Endopeptidase 
R70888 0.49 EST* Unknown 
W04706 0.49 EST Unknown 
N90783 0.49 Purinergic receptor (family A group 5)* Unknown 
AA427782 0.49 Cation-chloride cotransporter-interacting protein Ion channels 
AA136666 0.49 EST Unknown 
N92048 0.48 EST Unknown 
AA677403 0.48 Glycoprotein hormones, α polypeptide Cell-cell signaling 
R35892 0.48 EST Unknown 
N73301 0.48 EST Unknown 
AA453994 0.47 EST Unknown 
AA133167 0.47 EST Unknown 
T95262 0.46 Translocation protein 1 Memb. targeting 
W56760 0.46 EST Unknown 
AA431429 0.46 EST Unknown 
AA149287 0.46 EST Unknown 
N50904 0.46 EST Unknown 
W87826 0.46 EST Unknown 
W92233 0.46 EST Unknown 
W51795 0.46 Heat shock 27-kDa protein 2 Heat shock resp. 
H59559 0.46 EST* Unknown 
R28303 0.46 EST Unknown 
T98717 0.46 EST Unknown 
W89074 0.45 EST Unknown 
W02624 0.45 EST Unknown 
AA496002 0.45 EST Unknown 
T51024 0.45 Diphosphate dimethylallyl diphosph. isomerase 2 Unknown 
H52673 0.45 Bak Apoptosis 
AA682399 0.45 Angiogenin, ribonuclease, RNase A family, 5 RNA processing 
AA701545 0.45 Ribonuclease, RNase A family, k6 RNA processing 
N70057 0.45 Leukocyte-specific transcript 1* Defense/immunity 
W47387 0.45 EST* Unknown 
AA404479 0.45 Mitogen-activated protein kinase 14 Signal trans/stress 
AA011598 0.44 EST Unknown 
N63032 0.44 EST* Unknown 
AA147202 0.44 A kinase (PRKA) anchor protein 13 Signal transduction 
AA464708 0.44 Eukaryotic translation initiation factor 2, subunit 3 Protein synthesis 
N51226 0.43 EST Unknown 
T51539 0.43 EST Unknown 
W85876 0.43 EST* Unknown 
H42894 0.43 EST* Unknown 
AA453273 0.43 U6 snRNA-associated Sm-like protein RNA process/splice 
H87770 0.43 EST Unknown 
W61361 0.43 SERPINB8 Protease inhibitor 
R64190 0.43 Arginyl aminopeptidase Protein modification 
T50788 0.43 UDP glycosyltransferase 2 family, polypep. B15 Xenobiotic metab. 
T55337 0.43 EST Unknown 
AA490680 0.42 Transcobalamin II; macrocytic anemia* Vitamin transport 
AA460950 0.42 SMARCAL1 Transcription 
R95893 0.42 EST Unknown 
T82948 0.42 EST Unknown 
W47158 0.42 Engulfment and cell motility 2* Unknown 
AA676234 0.42 EST Unknown 
N64840 0.42 Folate hydrolase Folate uptake 
AA975384 0.42 KCNA5 Ion channels 
AA131466 0.42 EST Unknown 
R08261 0.42 EST Unknown 
W72227 0.42 EST* Unknown 
W88801 0.42 EST Unknown 
AA598836 0.42 Cullin 4A Tumor suppressor 
R52797 0.42 Hepatocyte growth factor* Growth factor 
AA476263 0.42 Phosphorylase kinase β Glycogen metab. 
AA453288 0.42 EST* Unknown 
AA454584 0.41 EST* Unknown 
AA136699 0.41 EST Unknown 
AA454691 0.41 Trinucleotide repeat containing 5 Unknown 
AA009671 0.41 EST Unknown 
T57540 0.41 EST Unknown 
AA486790 0.41 Cullin 1 Tumor suppressor 
AA490263 0.41 NIMA-related kinase 3 Cell proliferation 
W93482 0.41 EST Unknown 
T60109 0.41 RAB40B, member RAS oncogene family Unknown 
T95815 0.41 EST Unknown 
AA455301 0.41 GPAA1P anchor attachment protein 1 homolog Protein modification 
AA157499 0.41 Mitogen-activated protein kinase 13* Sig trans/stress 
T53022 0.41 EST Unknown 
H01039 0.40 EST Unknown 
AA702544 0.40 EST Unknown 
R98070 0.40 EST Unknown 
AA680300 0.40 Dipeptidylpeptidase 7 Peptidase 
R09890 0.40 EST Unknown 
AA054421 0.40 Tripartite motif-containing 31 Unknown 
AA256386 0.40 START domain containing 13 Unknown 
H99394 0.40 EST Unknown 
H77714 0.40 EST* Unknown 
AA004321 0.40 EST* Unknown 
R52934 0.40 EST Unknown 
AA486275 0.40 Ser/Cyst prot. inhib. clade B, memb. 1* Protease Inhib. 
AA620755 0.40 EST Unknown 
AA142943 0.40 Downstream of tyrosine kinase 1 Signal transduction 
N70632 0.40 Alcohol dehydrogenase 8 Redox regulation 
T51895 0.40 EphB4* Memb. Prot. 
AA022935 0.40 EST Unknown 
AA024866 0.40 EST Unknown 
W81196 0.40 CDC42 effector protein (Rho GTPase binding) 2 Unknown 
AA029703 0.39 EST Unknown 
N72128 0.39 ESTa Unknown 
N57872 0.39 Alanine-glyoxylate aminotransferase Amino acid bioch. 
AA872397 0.39 Lectin, galactoside-binding, soluble, 2 Sugar binding 
N72116 0.39 Solute carrier family 11, member 2* Transport 
AA610111 0.39 EST Unknown 
AA448094 0.39 EST Kinase 
H99479 0.39 Sec23-interacting protein p125 Protein transport 
R89765 0.39 EST Unknown 
W92045 0.38 EST Unknown 
AA458533 0.38 Forkhead box J1 Transcription 
T95234 0.38 EST Unknown 
AA005115 0.38 EST Unknown 
AA490300 0.38 PDGFA-associated protein 1 Cell proliferation 
AA872379 0.38 SMT3 suppressor of mif two 3 homolog 1 C’some seg/repair 
H61059 0.38 EST Unknown 
AA521015 0.38 EST Unknown 
AA410604 0.38 CDC16 cell division cycle 16 homolog C’some seg/repair 
AA176819 0.38 EST Unknown 
AA416665 0.38 MUM2 protein Unknown 
AA046700 0.38 F-box only protein 32* Protein degradation 
R02173 0.38 EST Unknown 
W31675 0.38 EST Unknown 
AA287196 0.38 Tetraspan 3 Cell adhesion 
H59093 0.37 EST Unknown 
W60647 0.37 EST Unknown 
AA025275 0.37 Death-associated protein kinase 1 Apoptosis 
AA455507 0.37 WBSCR20B Unknown 
AA680186 0.37 Chemokine (C-C motif) ligand 19 Chemotaxis 
AA620746 0.37 EST* Unknown 
R73500 0.37 Ribose 5-phosphate isomerase A Pentose phos path 
N72185 0.37 EST Unknown 
AA460369 0.37 EST Unknown 
AA191510 0.37 EST Unknown 
H27554 0.37 Progestin induced protein protein degradation 
W80688 0.37 EST Unknown 
W95082 0.37 Hydroxysteroid (11-β) dehydrogenase 2 Glucocort. biosynth 
AA609774 0.36 EST* Unknown 
N23399 0.36 EST* Unknown 
H78002 0.36 EST Unknown 
AA431179 0.36 Nucleotide-sugar transporter similar to sqv-7 Transport 
H94903 0.36 EST Unknown 
AA452988 0.36 Angio-associated, migratory cell protein Cell motility 
N79813 0.36 EST Unknown 
N29639 0.36 CMAH Unknown 
AA633882 0.36 GCN5-like 1* Transcription 
R61337 0.36 NY-REN-25 antigen Unknown 
N75569 0.36 EST* Unknown 
AA701976 0.36 Inositol 1,4,5-triphosphate receptor, type 3 Signal transduction 

Basal gene expression ratios were correlated with 5 μm 5-FU-induced apoptosis across the panel of 30 colon carcinoma cell lines, and 420 significantly correlated genes identified. Values shown are the Pearsons correlation coefficient (Correl) between basal gene expression and apoptosis induced by 5 μm 5-FU.

*

Gene also significantly correlated (in the same orientation) with 1 μm CPT-induced apoptosis.

a

Microarray data validated by Real-Time PCR (r >0.65, P <0.005 for correlation of microarray and RT-PCR data).

Table 2B
Negatively correlated genes
AccessionCorrelGene nameFunction
AA676604 −0.69 MORF-related gene X Cell proliferation 
AA464237 −0.63 Protein phosphatase 4, regulatory subunit 1 Unknown 
AA427899 −0.61 β-tubulin Cytoskeleton 
AA426374 −0.60 Tubulin, α2* Cytoskeleton 
T95200 −0.60 KIDDNS220* Unknown 
W01084 −0.59 Polybromo 1 Unknown 
AA630320 −0.59 Protease, serine, 15 Protease 
AA485214 −0.59 Nucleobindin 2 Calcium ion binding 
AA425089 −0.57 Clock homolog Transcription 
AA056465 −0.57 Non-POU domain containing, octamer-binding RNA process/splicing 
AA669758 −0.56 Nucleophosmin RNA process/splicing 
AA133187 −0.56 EST Unknown 
AA599175 −0.56 Nuclease sensitive element-binding protein 1 Transcription 
AA481944 −0.56 Retinoic acid receptor responder 2 Unknown 
AA428181 −0.56 Spindlin* C’some seg./repair 
N89861 −0.56 Mitochondrial ribosomal protein L42* Unknown 
AA152299 −0.55 EST Unknown 
R43471 −0.55 Aprataxin* Unknown 
AA001918 −0.55 EST* Unknown 
AA026682 −0.55 Topoisomerase (DNA) II α170 kDa DNA repl/repair 
W95041 −0.55 HS3ST3B1* Proteogly biosynth. 
R98442 −0.55 UDP-glucose ceramide glucosyltransf-like 1 Protein modification 
AA156743 −0.54 COBW-like protein Unknown 
AA181149 −0.54 EST Unknown 
AA680407 −0.54 EST Unknown 
AA044390 −0.53 UDP-glucose pyrophosphorylase 2 UDP-glucose metab. 
R21170 −0.53 EST Unknown 
AA007509 −0.53 Tetratricopeptide repeat domain 3* Unknown 
AA630346 −0.53 EST Unknown 
R02069 −0.52 Heterogeneous nuclear ribonucleoprotein H3* RNA process/splicing 
R02820 −0.52 EST Unknown 
AA101348 −0.52 Dendritic cell protein Unknown 
AA159194 −0.52 FAT tumor suppressor homolog 1a Cell adhesion 
W67309 −0.51 GTP-binding protein Sara GTP-binding protein 
AA416783 −0.51 H-2K binding factor-2 Transcription 
AA425224 −0.51 Methionine adenosyltransferase II, beta Unknown 
AA419177 −0.50 SLC7A5* Amino acid transport 
T67223 −0.50 EST* Unknown 
R10675 −0.50 Scavenger receptor class A, member 3 Redox regulation 
N90523 −0.50 Methionyl-tRNA formyltransferase, mitochond. Unknown 
H73265 −0.50 EST Unknown 
AA629923 −0.50 pM5 protein* Unknown 
AA669126 −0.49 Protein phosphatase 1, reg. (inhib) subunit 12A Cytoskeleton 
AA403035 −0.49 Transcription factor binding to IGHM enhancer 3 Transcription 
R01323 −0.49 Microfibrillar-associated protein 1 Extracellular matrix 
H22944 −0.49 Nicotinamide nucleotide transhydrogenase Electron transport 
R20670 −0.49 EST Unknown 
W68220 −0.49 EST Unknown 
T96688 −0.49 PBX/knotted 1 homeobox 1 Transcription 
AA045825 −0.49 EST Unknown 
AA701455 −0.48 Centromere protein F, 350/400ka (mitosin) C’some seg/repair 
AA598526 −0.48 Hypoxia-inducible factor 1, α subunit Transcription 
H82273 −0.48 Fem-1 homolog b Unknown 
N35301 −0.48 ADP-ribosylation factor-like 7a GTP-binding protein 
AA486402 −0.48 Heterogeneous nuclear ribonucleoprotein R* RNA processing 
W32751 −0.48 EST* Unknown 
AA416759 −0.48 Citrate synthase* Metabolism 
T62131 −0.48 Coagulation factor II (thrombin)* Blood coagulation 
AA432068 −0.48 Transmembrane protein vezatin Unknown 
AA004832 −0.48 EST Unknown 
AA416894 −0.48 Hepatocellular carcinoma-assoc protein HCA4 Unknown 
AA004801 −0.48 EST* Unknown 
AA232979 −0.48 EST Unknown 
H08548 −0.47 ATP citrate lyase* Metabolism 
AA630016 −0.47 Chaperonin containing TCP1, subunit 8 (τ)* Chaperone 
AA620556 −0.47 Peroxisomal D3,D2-enoyl-CoA isomerasea Fatty acid metabolism 
AA446103 −0.47 Lectin, mannose-binding, 1 Protein modification 
AA148536 −0.47 Nucleoporin 98kDa Protein & RNA traffick. 
R40970 −0.47 EST* Unknown 
R59694 −0.47 Likely ortholog of mouse enhancer trap locus 1 Unknown 
AA454174 −0.47 Zinc finger protein 19 (KOX 12) Unknown 
N23009 −0.47 EST Unknown 
AA633577 −0.46 Methylenetetrahydrofolate dehydrogenase* Folate metabolism 
AA150683 −0.46 EST* Unknown 
T64905 −0.46 Paired-like homeodomain transcription factor 2 Transcription 
R41998 −0.46 EST Unknown 
N90109 −0.46 Nucleolin* RNA process/splicing 
AA424566 −0.46 EST* Unknown 
W46420 −0.45 Pecanex homolog* Unknown 
AA228130 −0.45 PC4 and SFRS1 interacting protein 2* Unknown 
R01451 −0.45 EST Unknown 
H89664 −0.45 Amyloid β (A4) precursor-like protein 2* Blood coagulation 
N54344 −0.45 EST Unknown 
H99699 −0.45 EST Unknown 
N26714 −0.45 EST Unknown 
AA099134 −0.45 Hypoxia up-regulated 1 Chaperone 
AA644191 −0.45 ADP-ribosylation factor-like 3 GTP-binding protein 
AA496438 −0.45 Retinoic acid receptor γ Transcription 
R10662 −0.45 mutL homolog 1 DNA rep/repair 
R27615 −0.45 Protein kinase, DNA-activated, catalytic polypep. DNA rep/repair 
R25825 −0.45 N-Acetylgalactosaminidase α* Unknown 
R98008 −0.45 BMP-2 inducible kinase Kinase 
H95329 −0.45 EST Unknown 
AA464630 −0.45 Thrombospondin 1* Blood coagulation 
AA443302 −0.45 ras homolog gene family, member E* GTP-binding protein 
AA683578 −0.45 Adenosine deaminasea Adenine catabolism 
AA428195 −0.45 Protein tyrosine phosphatase, non-recept. type 2 Phosphatase 
W94438 −0.45 G1 to S phase transition 2 Unknown 
AA609284 −0.44 EphB6a Membrane associated 
AA043228 −0.44 Calponin 3, acidic Cytoskeleton 
N47967 −0.44 Rho GTPase-activating protein 5 Unknown 
AA131769 −0.44 EST Unknown 
T98684 −0.44 Chaperonin containing TCP1, subunit 4 (δ) Chaperone 
AA448285 −0.44 EST* Unknown 
H50886 −0.44 PWP2 periodic tryptophan protein homolog* Signal transduction 
N33274 −0.44 Phosphoribosylaminoimidazole carboxylase Purine biosynthesis 
H15662 −0.44 Cytoplasmic linker 2 Cytoskeleton 
AA676705 −0.44 Cell growth regulatory with ring finger domain* Cell prolif/stress resp. 
AA063624 −0.44 EST* Unknown 
N92478 −0.44 EST Unknown 
AA488447 −0.44 SPTLC1* Sphingolipid biosynth. 
AA621138 −0.44 EST Unknown 
AA679345 −0.44 Heterogeneous nuclear ribonucleoprotein H2 (H′) RNA processing 
AA029312 −0.44 NIMA-related kinase 9* Unknown 
H17612 −0.43 Arginase, type II* Nitric oxide biosynth. 
AA130866 −0.43 Trimethyllysine hydroxylase, epsilon Metabolism 
R01732 −0.43 Adenosine monophosph. deaminase (isoform E) AMP catabolism 
H73714 −0.43 Replication factor C (activator 1) 1 (145kD) DNA rep/repair 
AA437140 −0.43 EST Unknown 
AA017042 −0.43 HIV-1 Tat interactive protein* Transcription 
AA489813 −0.43 EST Unknown 
H27564 −0.43 DEAD/H (Asp-Glu-Ala-Asp/His) box polypep 5 RNA processing 
AA425853 −0.43 Splicing factor proline/glutamine rich* RNA process/splicing 
R95732 −0.43 DNA (cytosine-5-)-methyltransferase 2 Unknown 
AA598787 −0.43 Cytoskeleton-associated protein 4 Cytoskeleton 
AA176164 −0.43 EST Unknown 
N66003 −0.43 Spastic ataxia of Charlevoix-Saguenay Chaperone 
R11047 −0.43 EST* Unknown 
H98621 −0.43 Cullin 3 Protein degradation 
R27319 −0.43 Hairy/enhancer-of-split rel. with YRPW motif-like Transcription 
N26645 −0.43 EST Unknown 
N73130 −0.43 MAPK-interacting and spindle-stabilizing protein* C’some seg/repair 
R46202 −0.43 Iroquois homeobox protein 5 Transcription 
N69204 −0.42 CSE1 chromosome segregation 1-like C’some seg/repair 
AA463453 −0.42 EST Unknown 
AA504160 −0.42 ATP6V1A1 Small molec. transport 
H99170 −0.42 Calreticulin Ca2+ binding/transcrip 
AA186327 −0.42 NS1-associated protein 1 RNA process/splicing 
H73731 −0.42 EST Unknown 
R13911 −0.42 T54 protein Unknown 
AA404352 −0.42 Facilitated glucose transporter, member 10 Glucose transport 
AA448160 −0.42 NY-REN-45 antigen Tumor antigen 
AA431749 −0.42 EST Unknown 
AA041197 −0.42 EST Unknown 
H85557 −0.42 Stress 70 protein chaperone Chaperone 
AA127515 −0.42 Mitochondrial ribosomal protein S7* Unknown 
R84263 −0.42 Carbamoyl-phosphate synthetase 2* Pyrimidine pathway 
AA460171 −0.42 EST Unknown 
AA282230 −0.42 PSMC3 (proteasome 26S subunit, ATPase, 3) Protein degradation 
AA449345 −0.41 EST* Unknown 
N20480 −0.41 HSPC157 protein* Unknown 
R22439 −0.41 Transmembrane protein 4* Membrane associated 
W90764 −0.41 EST Unknown 
W32409 −0.41 Monocarboxylic acid transporter, member 10 Carboxylic acid transp 
R26672 −0.41 Endosome-associated FYVE-domain protein Unknown 
H54093 −0.41 EST Unknown 
AA427519 −0.41 E1A-binding protein p400 Unknown 
AA043347 −0.41 A disintegrin and metalloproteinase domain 10 Metallopeptidase 
AA460291 −0.41 BAD Apoptosis 
N59150 −0.41 IFN (α, β, and ω) receptor 1 Signal transduction 
T57082 −0.41 EST Unknown 
AA027160 −0.41 G1 to S phase transition 2 Unknown 
AA490256 −0.41 G protein, α inhibiting activity polypeptide 3* G-protein signaling 
W56369 −0.40 EST Unknown 
AA131909 −0.40 EST* Unknown 
AA156801 −0.40 Vam6/Vps39-like Unknown 
R92034 −0.40 Karyopherin α6 Protein transport 
R23287 −0.40 EST Unknown 
AA034051 −0.40 Adenomatosis polyposis coli Tumor suppressor 
R17711 −0.40 SART3 Unknown 
AA125869 −0.40 Potassium channel modulatory factor Ion channels 
N39218 −0.40 EST Unknown 
AA043503 −0.40 Down-regulator of transcription 1 Transcription 
AA130042 −0.40 Ortholog of mouse IRA1 protein Unknown 
R39111 −0.40 Early growth response 3* Transcription 
N75581 −0.40 Far upstream element (FUSE)-binding protein 1 Transcription 
W55968 −0.40 MBIP protein Prot. kinase inhibitor 
AA477165 −0.39 Radixin Cytoskeleton 
N64033 −0.39 EST Unknown 
AA936768 −0.39 Interleukin 1α Signal transduction 
AA460952 −0.39 SIRT1 (sirtuin)* Transcription 
H63455 −0.39 UDP-glucuronate decarboxylase 1 Unknown 
W90705 −0.39 B lymphoma Mo-MLV insertion region Transcription 
AA043800 −0.39 EST Unknown 
N59057 −0.39 EST Unknown 
AA071526 −0.39 Protein phosphatase 1, regulatory subunit 10 Protein transport 
R85213 −0.39 Ubiquitin protein ligase E3A Protein degradation 
N62077 −0.39 EST Unknown 
N23940 −0.39 EST Unknown 
W72167 −0.39 EST Unknown 
AA629567 −0.39 Heat shock 70-kDa protein 8* Chaperone 
AA469950 −0.39 EST* Unknown 
AA664004 −0.39 Ceroid-lipofuscinosis, neuronal 2 Peptidase 
N35241 −0.39 CDC42BPA Kinase 
AA676460 −0.39 Karyopherin α2 Protein transport 
H80749 −0.39 EST* Unknown 
AA455911 −0.39 ABCB1 (MDR/TAP)*a Transport/drug resist. 
T86027 −0.39 BRCA2 and CDKN1A-interacting protein C’some seg/repair 
W69178 −0.39 EST* Unknown 
W63789 −0.39 EST* Unknown 
AA479384 −0.39 Rho guanine nucleotide exchange factor 12 Unknown 
W15542 −0.39 cAMP-binding guanine nucleotide exch. fact. IV Unknown 
AA417012 −0.39 Zinc finger protein 336 Transcription 
W56770 −0.38 NY-REN-58 antigen* Unknown 
AA679454 −0.38 Steroidogenic acute regulatory protein Steroid biosynthesis 
AA430035 −0.38 Reticulon 3 Integral memb. Prot. 
R93875 −0.38 Nucleosome assembly protein 1-like 1 DNA rep/repair 
H99257 −0.38 Origin recognition complex, subunit 3-like C’some seg/repair 
AA070357 −0.38 Transketolase (Wernicke-Korsakoff syndrome) Unknown 
AA120777 −0.38 BTAF1 RNA polymerase II Transcription 
H19300 −0.38 TBP-interacting protein Unknown 
AA169631 −0.38 RBP1-like protein Unknown 
AA046067 −0.38 UDP-glucose pyrophosphorylase 2 UDP-glucose metab. 
AA148945 −0.38 EST Unknown 
AA169832 −0.38 3′-Phosphoadeno. 5′-phosphosulfate synth 1* Nuc. acid metabolism 
AA452873 −0.38 Cyclin D-type binding-protein 1 Unknown 
AA630104 −0.38 Lipase A, lysosomal acid, cholesterol esterase Triglyceride metab. 
N30161 −0.38 G-carboxyglutamic acid polypeptide 1* Unknown 
AA412691 −0.38 Nuclear transcription factor Yα Transcription 
T95592 −0.38 Survival of motor neuron prot. interacting prot 1* RNA process/splicing 
R63918 −0.38 Neuronatin* Ion channels 
R09301 −0.38 M-phase phosphoprotein 11 Unknown 
AA481067 −0.38 Karyopherin (importin) β2 Protein transport 
T98162 −0.38 EST Unknown 
AA455401 −0.38 GGA3 Protein transport 
H15215 −0.37 Steroid sulfatase, arylsulfatase C, isozyme S Steroid catabolism 
R26046 −0.37 Interleukin enhancer binding factor 3, 90 kDa Transcription 
AA045326 −0.37 Protein tyrosine phosphatase, receptor type, J Signal transduction 
AA450265 −0.37 PCNA DNA replication/repair 
W49522 −0.37 Proline 4-hydroxylase Protein modification 
AA034268 −0.37 Glutaredoxin (thioltransferase)* Redox regulation 
T69359 −0.37 EST Unknown 
N29901 −0.37 Dihydrolipoamide S-acetyltransferase Metabolism 
N36853 −0.37 EST Unknown 
AA625995 −0.37 Zinc finger protein 9 Transcription 
AA074666 −0.37 EST Unknown 
AA447984 −0.37 EST* Unknown 
H48420 −0.37 EST Unknown 
AA630784 −0.37 Thyroid hormone receptor interactor 13* Transcription 
T87341 −0.37 Kinetochore protein (Mitosin) C’some seg/repair 
H68845 −0.37 Peroxiredoxin 2* Redox regulation 
AA609655 −0.37 Synaptonemal complex protein 1 C’some seg/repair 
R48232 −0.37 Polycystic kidney disease 2 Ion channels 
AA669452 −0.36 Eukaryotic translation init. factor 2, subunit 1α Protein synthesis 
AA045587 −0.36 TAF12 Transcription 
AA669443 −0.36 Eukaryotic translation initiation factor 5* Protein synthesis 
AA282196 −0.36 Homeodomain interacting protein kinase 3 Kinase 
AA157787 −0.36 Kinetochore-associated 1 C’some seg/repair 
N76608 −0.36 EST Unknown 
H78433 −0.36 EST Unknown 
W86199 −0.36 Insulin-degrading enzyme Protein processing 
H94897 −0.36 Glycosyltransferase AD-017* Unknown 
AA147642 −0.36 EST Unknown 
AA193254 −0.36 Eukaryotic translation initiation factor 4E Protein synthesis 
R51818 −0.36 EST* Unknown 
Negatively correlated genes
AccessionCorrelGene nameFunction
AA676604 −0.69 MORF-related gene X Cell proliferation 
AA464237 −0.63 Protein phosphatase 4, regulatory subunit 1 Unknown 
AA427899 −0.61 β-tubulin Cytoskeleton 
AA426374 −0.60 Tubulin, α2* Cytoskeleton 
T95200 −0.60 KIDDNS220* Unknown 
W01084 −0.59 Polybromo 1 Unknown 
AA630320 −0.59 Protease, serine, 15 Protease 
AA485214 −0.59 Nucleobindin 2 Calcium ion binding 
AA425089 −0.57 Clock homolog Transcription 
AA056465 −0.57 Non-POU domain containing, octamer-binding RNA process/splicing 
AA669758 −0.56 Nucleophosmin RNA process/splicing 
AA133187 −0.56 EST Unknown 
AA599175 −0.56 Nuclease sensitive element-binding protein 1 Transcription 
AA481944 −0.56 Retinoic acid receptor responder 2 Unknown 
AA428181 −0.56 Spindlin* C’some seg./repair 
N89861 −0.56 Mitochondrial ribosomal protein L42* Unknown 
AA152299 −0.55 EST Unknown 
R43471 −0.55 Aprataxin* Unknown 
AA001918 −0.55 EST* Unknown 
AA026682 −0.55 Topoisomerase (DNA) II α170 kDa DNA repl/repair 
W95041 −0.55 HS3ST3B1* Proteogly biosynth. 
R98442 −0.55 UDP-glucose ceramide glucosyltransf-like 1 Protein modification 
AA156743 −0.54 COBW-like protein Unknown 
AA181149 −0.54 EST Unknown 
AA680407 −0.54 EST Unknown 
AA044390 −0.53 UDP-glucose pyrophosphorylase 2 UDP-glucose metab. 
R21170 −0.53 EST Unknown 
AA007509 −0.53 Tetratricopeptide repeat domain 3* Unknown 
AA630346 −0.53 EST Unknown 
R02069 −0.52 Heterogeneous nuclear ribonucleoprotein H3* RNA process/splicing 
R02820 −0.52 EST Unknown 
AA101348 −0.52 Dendritic cell protein Unknown 
AA159194 −0.52 FAT tumor suppressor homolog 1a Cell adhesion 
W67309 −0.51 GTP-binding protein Sara GTP-binding protein 
AA416783 −0.51 H-2K binding factor-2 Transcription 
AA425224 −0.51 Methionine adenosyltransferase II, beta Unknown 
AA419177 −0.50 SLC7A5* Amino acid transport 
T67223 −0.50 EST* Unknown 
R10675 −0.50 Scavenger receptor class A, member 3 Redox regulation 
N90523 −0.50 Methionyl-tRNA formyltransferase, mitochond. Unknown 
H73265 −0.50 EST Unknown 
AA629923 −0.50 pM5 protein* Unknown 
AA669126 −0.49 Protein phosphatase 1, reg. (inhib) subunit 12A Cytoskeleton 
AA403035 −0.49 Transcription factor binding to IGHM enhancer 3 Transcription 
R01323 −0.49 Microfibrillar-associated protein 1 Extracellular matrix 
H22944 −0.49 Nicotinamide nucleotide transhydrogenase Electron transport 
R20670 −0.49 EST Unknown 
W68220 −0.49 EST Unknown 
T96688 −0.49 PBX/knotted 1 homeobox 1 Transcription 
AA045825 −0.49 EST Unknown 
AA701455 −0.48 Centromere protein F, 350/400ka (mitosin) C’some seg/repair 
AA598526 −0.48 Hypoxia-inducible factor 1, α subunit Transcription 
H82273 −0.48 Fem-1 homolog b Unknown 
N35301 −0.48 ADP-ribosylation factor-like 7a GTP-binding protein 
AA486402 −0.48 Heterogeneous nuclear ribonucleoprotein R* RNA processing 
W32751 −0.48 EST* Unknown 
AA416759 −0.48 Citrate synthase* Metabolism 
T62131 −0.48 Coagulation factor II (thrombin)* Blood coagulation 
AA432068 −0.48 Transmembrane protein vezatin Unknown 
AA004832 −0.48 EST Unknown 
AA416894 −0.48 Hepatocellular carcinoma-assoc protein HCA4 Unknown 
AA004801 −0.48 EST* Unknown 
AA232979 −0.48 EST Unknown 
H08548 −0.47 ATP citrate lyase* Metabolism 
AA630016 −0.47 Chaperonin containing TCP1, subunit 8 (τ)* Chaperone 
AA620556 −0.47 Peroxisomal D3,D2-enoyl-CoA isomerasea Fatty acid metabolism 
AA446103 −0.47 Lectin, mannose-binding, 1 Protein modification 
AA148536 −0.47 Nucleoporin 98kDa Protein & RNA traffick. 
R40970 −0.47 EST* Unknown 
R59694 −0.47 Likely ortholog of mouse enhancer trap locus 1 Unknown 
AA454174 −0.47 Zinc finger protein 19 (KOX 12) Unknown 
N23009 −0.47 EST Unknown 
AA633577 −0.46 Methylenetetrahydrofolate dehydrogenase* Folate metabolism 
AA150683 −0.46 EST* Unknown 
T64905 −0.46 Paired-like homeodomain transcription factor 2 Transcription 
R41998 −0.46 EST Unknown 
N90109 −0.46 Nucleolin* RNA process/splicing 
AA424566 −0.46 EST* Unknown 
W46420 −0.45 Pecanex homolog* Unknown 
AA228130 −0.45 PC4 and SFRS1 interacting protein 2* Unknown 
R01451 −0.45 EST Unknown 
H89664 −0.45 Amyloid β (A4) precursor-like protein 2* Blood coagulation 
N54344 −0.45 EST Unknown 
H99699 −0.45 EST Unknown 
N26714 −0.45 EST Unknown 
AA099134 −0.45 Hypoxia up-regulated 1 Chaperone 
AA644191 −0.45 ADP-ribosylation factor-like 3 GTP-binding protein 
AA496438 −0.45 Retinoic acid receptor γ Transcription 
R10662 −0.45 mutL homolog 1 DNA rep/repair 
R27615 −0.45 Protein kinase, DNA-activated, catalytic polypep. DNA rep/repair 
R25825 −0.45 N-Acetylgalactosaminidase α* Unknown 
R98008 −0.45 BMP-2 inducible kinase Kinase 
H95329 −0.45 EST Unknown 
AA464630 −0.45 Thrombospondin 1* Blood coagulation 
AA443302 −0.45 ras homolog gene family, member E* GTP-binding protein 
AA683578 −0.45 Adenosine deaminasea Adenine catabolism 
AA428195 −0.45 Protein tyrosine phosphatase, non-recept. type 2 Phosphatase 
W94438 −0.45 G1 to S phase transition 2 Unknown 
AA609284 −0.44 EphB6a Membrane associated 
AA043228 −0.44 Calponin 3, acidic Cytoskeleton 
N47967 −0.44 Rho GTPase-activating protein 5 Unknown 
AA131769 −0.44 EST Unknown 
T98684 −0.44 Chaperonin containing TCP1, subunit 4 (δ) Chaperone 
AA448285 −0.44 EST* Unknown 
H50886 −0.44 PWP2 periodic tryptophan protein homolog* Signal transduction 
N33274 −0.44 Phosphoribosylaminoimidazole carboxylase Purine biosynthesis 
H15662 −0.44 Cytoplasmic linker 2 Cytoskeleton 
AA676705 −0.44 Cell growth regulatory with ring finger domain* Cell prolif/stress resp. 
AA063624 −0.44 EST* Unknown 
N92478 −0.44 EST Unknown 
AA488447 −0.44 SPTLC1* Sphingolipid biosynth. 
AA621138 −0.44 EST Unknown 
AA679345 −0.44 Heterogeneous nuclear ribonucleoprotein H2 (H′) RNA processing 
AA029312 −0.44 NIMA-related kinase 9* Unknown 
H17612 −0.43 Arginase, type II* Nitric oxide biosynth. 
AA130866 −0.43 Trimethyllysine hydroxylase, epsilon Metabolism 
R01732 −0.43 Adenosine monophosph. deaminase (isoform E) AMP catabolism 
H73714 −0.43 Replication factor C (activator 1) 1 (145kD) DNA rep/repair 
AA437140 −0.43 EST Unknown 
AA017042 −0.43 HIV-1 Tat interactive protein* Transcription 
AA489813 −0.43 EST Unknown 
H27564 −0.43 DEAD/H (Asp-Glu-Ala-Asp/His) box polypep 5 RNA processing 
AA425853 −0.43 Splicing factor proline/glutamine rich* RNA process/splicing 
R95732 −0.43 DNA (cytosine-5-)-methyltransferase 2 Unknown 
AA598787 −0.43 Cytoskeleton-associated protein 4 Cytoskeleton 
AA176164 −0.43 EST Unknown 
N66003 −0.43 Spastic ataxia of Charlevoix-Saguenay Chaperone 
R11047 −0.43 EST* Unknown 
H98621 −0.43 Cullin 3 Protein degradation 
R27319 −0.43 Hairy/enhancer-of-split rel. with YRPW motif-like Transcription 
N26645 −0.43 EST Unknown 
N73130 −0.43 MAPK-interacting and spindle-stabilizing protein* C’some seg/repair 
R46202 −0.43 Iroquois homeobox protein 5 Transcription 
N69204 −0.42 CSE1 chromosome segregation 1-like C’some seg/repair 
AA463453 −0.42 EST Unknown 
AA504160 −0.42 ATP6V1A1 Small molec. transport 
H99170 −0.42 Calreticulin Ca2+ binding/transcrip 
AA186327 −0.42 NS1-associated protein 1 RNA process/splicing 
H73731 −0.42 EST Unknown 
R13911 −0.42 T54 protein Unknown 
AA404352 −0.42 Facilitated glucose transporter, member 10 Glucose transport 
AA448160 −0.42 NY-REN-45 antigen Tumor antigen 
AA431749 −0.42 EST Unknown 
AA041197 −0.42 EST Unknown 
H85557 −0.42 Stress 70 protein chaperone Chaperone 
AA127515 −0.42 Mitochondrial ribosomal protein S7* Unknown 
R84263 −0.42 Carbamoyl-phosphate synthetase 2* Pyrimidine pathway 
AA460171 −0.42 EST Unknown 
AA282230 −0.42 PSMC3 (proteasome 26S subunit, ATPase, 3) Protein degradation 
AA449345 −0.41 EST* Unknown 
N20480 −0.41 HSPC157 protein* Unknown 
R22439 −0.41 Transmembrane protein 4* Membrane associated 
W90764 −0.41 EST Unknown 
W32409 −0.41 Monocarboxylic acid transporter, member 10 Carboxylic acid transp 
R26672 −0.41 Endosome-associated FYVE-domain protein Unknown 
H54093 −0.41 EST Unknown 
AA427519 −0.41 E1A-binding protein p400 Unknown 
AA043347 −0.41 A disintegrin and metalloproteinase domain 10 Metallopeptidase 
AA460291 −0.41 BAD Apoptosis 
N59150 −0.41 IFN (α, β, and ω) receptor 1 Signal transduction 
T57082 −0.41 EST Unknown 
AA027160 −0.41 G1 to S phase transition 2 Unknown 
AA490256 −0.41 G protein, α inhibiting activity polypeptide 3* G-protein signaling 
W56369 −0.40 EST Unknown 
AA131909 −0.40 EST* Unknown 
AA156801 −0.40 Vam6/Vps39-like Unknown 
R92034 −0.40 Karyopherin α6 Protein transport 
R23287 −0.40 EST Unknown 
AA034051 −0.40 Adenomatosis polyposis coli Tumor suppressor 
R17711 −0.40 SART3 Unknown 
AA125869 −0.40 Potassium channel modulatory factor Ion channels 
N39218 −0.40 EST Unknown 
AA043503 −0.40 Down-regulator of transcription 1 Transcription 
AA130042 −0.40 Ortholog of mouse IRA1 protein Unknown 
R39111 −0.40 Early growth response 3* Transcription 
N75581 −0.40 Far upstream element (FUSE)-binding protein 1 Transcription 
W55968 −0.40 MBIP protein Prot. kinase inhibitor 
AA477165 −0.39 Radixin Cytoskeleton 
N64033 −0.39 EST Unknown 
AA936768 −0.39 Interleukin 1α Signal transduction 
AA460952 −0.39 SIRT1 (sirtuin)* Transcription 
H63455 −0.39 UDP-glucuronate decarboxylase 1 Unknown 
W90705 −0.39 B lymphoma Mo-MLV insertion region Transcription 
AA043800 −0.39 EST Unknown 
N59057 −0.39 EST Unknown 
AA071526 −0.39 Protein phosphatase 1, regulatory subunit 10 Protein transport 
R85213 −0.39 Ubiquitin protein ligase E3A Protein degradation 
N62077 −0.39 EST Unknown 
N23940 −0.39 EST Unknown 
W72167 −0.39 EST Unknown 
AA629567 −0.39 Heat shock 70-kDa protein 8* Chaperone 
AA469950 −0.39 EST* Unknown 
AA664004 −0.39 Ceroid-lipofuscinosis, neuronal 2 Peptidase 
N35241 −0.39 CDC42BPA Kinase 
AA676460 −0.39 Karyopherin α2 Protein transport 
H80749 −0.39 EST* Unknown 
AA455911 −0.39 ABCB1 (MDR/TAP)*a Transport/drug resist. 
T86027 −0.39 BRCA2 and CDKN1A-interacting protein C’some seg/repair 
W69178 −0.39 EST* Unknown 
W63789 −0.39 EST* Unknown 
AA479384 −0.39 Rho guanine nucleotide exchange factor 12 Unknown 
W15542 −0.39 cAMP-binding guanine nucleotide exch. fact. IV Unknown 
AA417012 −0.39 Zinc finger protein 336 Transcription 
W56770 −0.38 NY-REN-58 antigen* Unknown 
AA679454 −0.38 Steroidogenic acute regulatory protein Steroid biosynthesis 
AA430035 −0.38 Reticulon 3 Integral memb. Prot. 
R93875 −0.38 Nucleosome assembly protein 1-like 1 DNA rep/repair 
H99257 −0.38 Origin recognition complex, subunit 3-like C’some seg/repair 
AA070357 −0.38 Transketolase (Wernicke-Korsakoff syndrome) Unknown 
AA120777 −0.38 BTAF1 RNA polymerase II Transcription 
H19300 −0.38 TBP-interacting protein Unknown 
AA169631 −0.38 RBP1-like protein Unknown 
AA046067 −0.38 UDP-glucose pyrophosphorylase 2 UDP-glucose metab. 
AA148945 −0.38 EST Unknown 
AA169832 −0.38 3′-Phosphoadeno. 5′-phosphosulfate synth 1* Nuc. acid metabolism 
AA452873 −0.38 Cyclin D-type binding-protein 1 Unknown 
AA630104 −0.38 Lipase A, lysosomal acid, cholesterol esterase Triglyceride metab. 
N30161 −0.38 G-carboxyglutamic acid polypeptide 1* Unknown 
AA412691 −0.38 Nuclear transcription factor Yα Transcription 
T95592 −0.38 Survival of motor neuron prot. interacting prot 1* RNA process/splicing 
R63918 −0.38 Neuronatin* Ion channels 
R09301 −0.38 M-phase phosphoprotein 11 Unknown 
AA481067 −0.38 Karyopherin (importin) β2 Protein transport 
T98162 −0.38 EST Unknown 
AA455401 −0.38 GGA3 Protein transport 
H15215 −0.37 Steroid sulfatase, arylsulfatase C, isozyme S Steroid catabolism 
R26046 −0.37 Interleukin enhancer binding factor 3, 90 kDa Transcription 
AA045326 −0.37 Protein tyrosine phosphatase, receptor type, J Signal transduction 
AA450265 −0.37 PCNA DNA replication/repair 
W49522 −0.37 Proline 4-hydroxylase Protein modification 
AA034268 −0.37 Glutaredoxin (thioltransferase)* Redox regulation 
T69359 −0.37 EST Unknown 
N29901 −0.37 Dihydrolipoamide S-acetyltransferase Metabolism 
N36853 −0.37 EST Unknown 
AA625995 −0.37 Zinc finger protein 9 Transcription 
AA074666 −0.37 EST Unknown 
AA447984 −0.37 EST* Unknown 
H48420 −0.37 EST Unknown 
AA630784 −0.37 Thyroid hormone receptor interactor 13* Transcription 
T87341 −0.37 Kinetochore protein (Mitosin) C’some seg/repair 
H68845 −0.37 Peroxiredoxin 2* Redox regulation 
AA609655 −0.37 Synaptonemal complex protein 1 C’some seg/repair 
R48232 −0.37 Polycystic kidney disease 2 Ion channels 
AA669452 −0.36 Eukaryotic translation init. factor 2, subunit 1α Protein synthesis 
AA045587 −0.36 TAF12 Transcription 
AA669443 −0.36 Eukaryotic translation initiation factor 5* Protein synthesis 
AA282196 −0.36 Homeodomain interacting protein kinase 3 Kinase 
AA157787 −0.36 Kinetochore-associated 1 C’some seg/repair 
N76608 −0.36 EST Unknown 
H78433 −0.36 EST Unknown 
W86199 −0.36 Insulin-degrading enzyme Protein processing 
H94897 −0.36 Glycosyltransferase AD-017* Unknown 
AA147642 −0.36 EST Unknown 
AA193254 −0.36 Eukaryotic translation initiation factor 4E Protein synthesis 
R51818 −0.36 EST* Unknown 

Basal gene expression ratios were correlated with 5 μm 5-FU-induced apoptosis across the panel of 30 colon carcinoma cell lines, and 420 significantly correlated genes identified. Values shown are the Pearsons correlation coefficient (Correl) between basal gene expression and apoptosis induced by 5 μm 5-FU.

*

Gene also significantly correlated (in the same orientation) with 1 μm CPT-induced apoptosis.

a

Microarray data validated by Real-Time PCR (r >0.65, P <0.005 for correlation of microarray and RT-PCR data).

Table 3

Correlation among TS and TP activities and 5-FU-induced apoptosis

5-FU-induced apoptosis (LN)
5 μm50 μm500 μm
TS activity (LN) r −0.372* −0.291* −0.334 
 P 0.044 0.119 0.072 
TP activity (LN) r 0.327 0.298 0.511 
 P 0.078 0.109 0.004 
5-FU-induced apoptosis (LN)
5 μm50 μm500 μm
TS activity (LN) r −0.372* −0.291* −0.334 
 P 0.044 0.119 0.072 
TP activity (LN) r 0.327 0.298 0.511 
 P 0.078 0.109 0.004 

Pearson’s correlation coefficient was used when both enzyme activity and apoptosis data were normally distributed (*). Otherwise, comparisons were made using a Spearman’s correlation coefficient.

Table 4

Genes correlated with 1 μm CPT-induced apoptosis

AccessionCorrelGene nameFunction
AA425754 0.602 NAPA (N-ethyl. sens. factor att. prot α) Vesicle transp. 
AA664179 0.580 Keratin 18 Cytoskeleton 
AA046700 0.576 F-box only protein 32a Prot. degrad. 
N63943 0.570 Lysozyme (renal amyloidosis) Inflammation 
H68885 0.569 TSSC3 (tumor supp. Subtrans. cand 3)a Apoptosis 
AA022679 0.553 ESTa Unknown 
AA490680 0.538 Transcobalamin II; macrocytic anemiaa Vitamin transp. 
AA486275 0.534 Ser/cyst prot. Inhib. clade B, memb. 1 Protease inhib. 
N90783 0.532 Purinergic receptor (family A group 5)a Unknown 
AA464569 0.525 γ Tubulin ring complex protein Cytoskeleton 
AA464578 0.519 rho/rac guanine nucleotide exch. factor 2 Signal transd. 
AA989217 0.508 Ca2+-promoted Ras inactivatora Unknown 
N90281 0.501 B7 protein Unknown 
AA155668 0.501 Regulatory factor X, 2 Transcription 
H58175 0.499 EST Unknown 
AA005410 0.497 EST Unknown 
AA702013 0.494 SLC22A1 (solute carrier family 22) Ion transport 
AA004711 0.491 EST Unknown 
AA699573 0.491 Transcription factor 2, hepatic Unknown 
T51895 0.481 EphB4a Memb. prot. 
N52651 0.480 ESTa Unknown 
R33303 0.475 Prot. kinase, AMP-activated, α1 Kinase 
R54664 0.472 SERPINB1 (ser/cyst prot. inhib, clade B) Protease inhib. 
N89753 0.472 EST Unknown 
H55915 0.471 EST Unknown 
W85876 0.467 ESTa Unknown 
R52797 0.466 Hepatocyte growth factora Growth factor 
AA630354 0.465 Sphingosine kinase 2 Kinase 
H55839 0.458 EST Unknown 
AA454014 0.456 EST Unknown 
N67039 0.456 EST Unknown 
N78909 0.456 EST Unknown 
AA971406 0.455 EST Unknown 
AA424587 0.452 UGCGL2 Unknown 
W90085 0.448 Nuc. receptor subfam 0, gr. B, memb. 2 Transcription 
AA459213 0.445 N2+ channel, nonvoltage-gated 1α Ion channels 
N23399 0.444 ESTa Unknown 
H72588 0.443 EST Unknown 
AA453289 0.439 ZYG homolog Unknown 
R23924 0.438 EST Unknown 
H59559 0.437 ESTa Unknown 
W94880 0.436 HIRA Transcription 
N68327 0.436 EST Unknown 
R00151 0.434 EST Unknown 
AA291491 0.433 DC12 protein Unknown 
W15339 0.427 EST Unknown 
AA455284 0.424 ASC-1 complex subunit P100 Unknown 
AA142917 0.423 EST Unknown 
AA058709 0.422 EST Unknown 
T90374 0.420 EST Unknown 
AA054704 0.420 EST Unknown 
N95187 0.419 EST Unknown 
N22776 0.419 EST Unknown 
H24316 0.419 Aquaporin 1 Water transp 
AA664101 0.418 Aldehyde dehydrogenase 1, member A1 Aldehyde metab. 
N71442 0.418 EST Unknown 
AA620746 0.416 ESTa Unknown 
N63864 0.416 EST Unknown 
AA160670 0.414 Lysophosphatidic acid phosphatase Lipid metab. 
H66150 0.413 WSB1 (SOCS box WD prot. SWiP-1) Unknown 
H68848 0.413 Apolipoprotein H (β2-glycoprotein I) Immunity 
T90369 0.409 EST Unknown 
H86117 0.408 Activity-reg. cytoskeleton-assoc protein Cytoskeleton 
AA418876 0.407 EST Unknown 
H62267 0.407 EST Unknown 
AA406180 0.405 SLC22A1L (solute carrier family 22) Ion transport 
AA037229 0.404 Integrin β3 Cell adhesion 
N75569 0.404 ESTa Unknown 
N50959 0.401 Amine oxidase, copper containing 2 Redox 
H42894 0.401 ESTa Unknown 
R16838 0.400 Cytochrome P450 17 Unknown 
R70888 0.399 ESTa Unknown 
AA150619 0.399 EST Unknown 
H77714 0.396 ESTa Unknown 
N95621 0.396 EST Unknown 
H73013 0.394 EST Unknown 
AA430668 0.394 FCGRT (Fc frag. of IgG recep, transp, α) Immune resp. 
AA136532 0.393 EST Unknown 
AA113881 0.393 Ubiquitin-conjugating enzyme E2G 1 Prot. degrad. 
W92160 0.392 EST Unknown 
T96605 0.390 EST Unknown 
AA465353 0.390 Histone deacetylase 1 Transcription 
N72116 0.389 Solute carrier family 11, member 2a Transport 
R00822 0.388 EST Unknown 
AA935560 0.388 Relaxin 2 Pregnancy 
T58775 0.387 Chemokine (C-C motif) ligand 16a Chemotaxis 
R98262 0.387 EST Unknown 
R33037 0.386 EST Unknown 
AI017703 0.385 EIF3S3 (euk. transl. init. fact 3, subu 3 γ) Translation 
AA400234 0.385 Multiple endocrine neoplasia I Tumor supp. 
AA633882 0.383 GCN5-like 1a Transcription 
AA495936 0.383 Microsomal glutathione S-transferase 1 Glutathio. conj. 
AA845156 0.383 Serine protease inhibitor, Kazal type 1 Protease inhib. 
AA004321 0.382 ESTa Unknown 
N63032 0.381 ESTa Unknown 
H10072 0.381 Neuronal Shc adaptor homolog Unknown 
T97710 0.379 Ladinin 1 Base. membr. 
H88540 0.377 Heat shock protein 86 Protein folding 
R33717 0.377 EST Unknown 
R33537 0.376 Semaphorin 7A Immune resp. 
N68492 0.376 Anaphase-promoting complex 1 Mitosis 
AA424937 0.374 EST Unknown 
AA644550 0.374 Translocase of outer mitochon. Memb. 20 Unknown 
N32811 0.374 EST Unknown 
AA157499 0.373 Mitogen-activated protein kinase 13a S. trans/stress res 15 
W93847 0.373 Mucin 15 Unknown 
AA454584 0.373 ESTa Unknown 
AA701655 0.372 EST Unknown 
N67808 0.371 EST Unknown 
W93024 0.371 EST Unknown 
AA284249 0.370 EST Unknown 
AA609774 0.370 ESTa Unknown 
AA047478 0.369 Coronin, actin-binding protein, 1A Cytoskeleton 
N70057 0.369 Leukocyte-specific transcript 1a Defense/immunity 
W47387 0.368 ESTa Unknown 
R24356 0.367 EST Unknown 
W86860 0.366 Nuclear VCP-like ATP binding 
W86660 0.366 EST Unknown 
R21770 0.365 Down syndrome critical region gene 4 Unknown 
AA479795 0.364 IFN stimulated gene 20 kDa Cell proliferation 
W73966 0.363 EST Unknown 
W72227 0.363 ESTa Unknown 
H91216 0.362 EST Unknown 
W47158 0.362 Engulfment and cell motility 2a Unknown 
AA453288 0.362 ESTa Unknown 
N55067 0.362 RAD23 homolog B DNA repair 
AA419092 0.362 EDG4 Lipid binding 
AA255954 0.361 Golgi complex associated protein 1 Unknown 
AA446027 0.361 Early growth response 2 Transcription 
R32952 0.361 S100 calcium-binding protein P Protein binding 
AA630016 −0.601 Chaperonin containing TCP1, subunit 8 (τ)a Chaperone 
AA431773 −0.577 Fatty acid desaturase 1 Fatty acid metab. 
N20480 −0.553 HSPC157 proteina Unknown 
AA036956 −0.546 K2+ inwardly-rectifying channel, subfam J, memb 8 Ion transport 
R43471 −0.545 Aprataxina Unknown 
AA490390 −0.537 Small acidic protein Unknown 
AA599178 −0.535 Ribosomal protein L27a Ribosome 
W68281 −0.527 MAPKAPK3 Sig. trans/stress 
T98796 −0.524 MEF2C (MADS box transc. enhan. fact 2, pep. C) Transcription 
N30161 −0.521 G-carboxyglutamic acid polypeptide 1a Unknown 
AA446819 −0.520 Ornithine aminotransferase (gyrate atrophy) Amino acid metab. 
AA176220 −0.518 Lsm3 protein RNA processing 
AA448285 −0.515 ESTa Unknown 
T61475 −0.514 EST Unknown 
  Survival of motor neuron protein interacting prot  
T95592 −0.513 1a RNA process/splicing 
R92452 −0.506 Ca2+ channel, voltage-dependent, beta 2 subunit Ion transport 
H68845 −0.503 Peroxiredoxin 2a Redox regulation 
R11047 −0.503 ESTa Unknown 
R60995 −0.498 Cochlin Unknown 
R40897 −0.497 3-Oxoacid CoA transferase Metabolism 
AA598561 −0.497 CD164 antigen, sialomucin Cell adhesion 
AA428181 −0.495 Spindlina C’some seg./repair 
R51912 −0.494 Somatostatin Peptide hormone 
AA418524 −0.491 Phospholipase D2 Signal transduction 
W56770 −0.490 NY-REN-58 antigena Unknown 
AA489275 −0.490 ATPase, Na+/K+ transporting, beta 3 polypeptide Ion transport 
W72466 −0.487 EST Unknown 
T52894 −0.486 Myosin light chain 1 slow a Cytoskeleton 
AA495846 −0.484 Forkhead-like 7 Transcription 
AA629567 −0.482 Heat shock 70-kDa protein 8a Chaperone 
R51818 −0.481 ESTa Unknown 
AA708298 −0.478 ATP5B (ATP synth, H+ transp, mitochon. F1) Ion transport 
W32751 −0.476 ESTa Unknown 
W94106 −0.476 Casein kinase 1, epsilon Signal transduction 
AA034268 −0.474 Glutaredoxin (thioltransferase)a Redox regulation 
AA424566 −0.473 ESTa Unknown 
AA464630 −0.473 Thrombospondin 1a Blood coagulation 
AA936757 −0.472 Heparin-binding growth factor binding protein Signal transduction 
AA663440 −0.472 EST Unknown 
AA669443 −0.471 Eukaryotic translation initiation factor 5a Protein synthesis 
AA428939 −0.470 EST Unknown 
AA455911 −0.470 ABCB1 (MDR/TAP)a Transport/drug resist. 
H94897 −0.468 Glycosyltransferase AD-017a Unknown 
T66840 −0.467 EST Unknown 
AA630784 −0.466 Thyroid hormone receptor interactor 13a Transcription 
AA628430 −0.466 Lsm1 protein RNA processing 
H20652 −0.462 ADP-ribosylation factor-like 6 interacting protein Unknown 
W74133 −0.462 EST Unknown 
W57983 −0.461 Pinin, desmosome associated protein Cell adhesion 
H50886 −0.460 PWP2 periodic tryptophan protein homologa Signal transduction 
H22652 −0.460 Glia maturation factor β Signal transduction 
T67223 −0.457 ESTa Unknown 
AA486919 −0.456 Ribosomal protein L28 Ribosomal subunit 
AA444009 −0.455 Glucosidase α Glycogen catabolism 
N30185 −0.454 EST Unknown 
AA670438 −0.453 Ubiquitin COOH-terminal esterase L1 Protein degradation 
W63789 −0.447 ESTa Unknown 
R14760 −0.443 Caspase 3, apoptosis-related cysteine protease Apoptosis 
H17612 −0.442 Arginase, type IIa NO biosynthesis 
AA126860 −0.442 Amyloid β precursor protein-binding protein 1 Signal transduction 
AA469950 −0.441 ESTa Unknown 
AA496944 −0.440 EST Unknown 
H58119 −0.439 EST Unknown 
AA455497 −0.439 EST Unknown 
R59722 −0.439 EST Unknown 
H24650 −0.438 Laminin γ1 Basement membrane 
N77514 −0.438 EST Unknown 
N73130 −0.438 MAPK-interacting and spindle-stabilizing proteina C’some seg/repair 
AA504656 −0.436 LTBP1 (latent TGFβ-binding protein 1) Protein binding 
R90743 −0.435 MAPK8IP1 Signal transduction 
T84139 −0.434 Holocytochrome c synthase Electron transport 
AA449345 −0.433 ESTa Unknown 
H19822 −0.431 Leucyl-tRNA synthetase Protein synthesis 
AA633577 −0.429 Methylenetetrahydrofolate dehydrogenasea Folate metabolism 
W86876 −0.429 EST Unknown 
AA007509 −0.428 Tetratricopeptide repeat domain 3a Unknown 
R22439 −0.426 Transmembrane protein 4a Membrane associated 
AA454597 −0.426 Golgi phosphoprotein 2 Unknown 
AA290737 −0.426 Glutathione S-transferase M1 Glutathione conj. 
AA173310 −0.425 Like mouse brain protein E46 Unknown 
R44546 −0.422 EST Unknown 
AA676797 −0.422 Cyclin F Cell cycle 
AA486305 −0.420 Solute carrier family 25, member 3 Ion transp, mitochond. 
R55075 −0.420 MpV17 transgene Redox 
R40970 −0.420 ESTa Unknown 
AA426374 −0.420 Tubulin α2a Cytoskeleton 
AA151486 −0.418 Phosphoribosyl pyrophosphate synthetase 2 Nucleic acid metab. 
AA490256 −0.415 G protein, α inhibiting activity polypeptide 3a G-protein signaling 
N89861 −0.415 Mitochondrial ribosomal protein L42a Unknown 
AA443302 −0.414 ras homolog gene family, member Ea GTP-binding protein 
N46831 −0.414 EST Unknown 
N90630 −0.412 YWHAH (tyr 3-m’ox/tryp 5-m’ox activ. prot. eta) Protein binding 
AA481397 −0.412 Phosphodiesterase 4D, cAMP-specific Nucleotide metabolism 
H39187 −0.407 Cadherin, EGF LAG seven-pass G-type receptor2 Unknown 
R19031 −0.406 Cryptochrome 1 Photoreceptor 
AA134871 −0.406 Fibulin 1 Extracellular matrix 
AA669136 −0.405 Transcription factor 4 Transcription 
R87840 −0.405 Intercellular adhesion molecule 5, telencephalin Cell adhesion 
N67822 −0.404 EST Unknown 
AA431885 −0.404 MAP kinase-interacting serine/threonine kinase 1 Signal transduction 
AA676705 −0.403 Cell growth regulatory with ring finger domaina Cell prolif/stress resp. 
R39111 −0.403 Early growth response 3a Transcription 
AA479243 −0.401 Autocrine motility factor receptor Cell motility 
T74606 −0.401 TRAM-like protein Membrane associated 
N20335 −0.400 Clathrin, light polypeptide (Lcb) Vesicle transport 
AA045965 −0.400 Ca2+/calmodulin-dependent serine protein kinase Cell adhesion 
AA063624 −0.400 ESTa Unknown 
AA150683 −0.399 ESTa Unknown 
AA169832 −0.399 3′-Phosphoadenosine 5′-phosphosulfate synth 1a Nuc. acid metabolism 
W69178 −0.398 ESTa Unknown 
R11019 −0.397 Heterogeneous nuclear ribonucleoprotein H1 (H) RNA processing 
T95200 −0.397 KIDDNS220a Unknown 
AA099787 −0.396 Alkylglycerone phosphate synthase Lipid metabolism 
R25825 −0.395 N-Acetylgalactosaminidase αa Unknown 
N50745 −0.393 EST Unknown 
H08548 −0.393 ATP citrate lyasea Metabolism 
AA228130 −0.393 PC4 and SFRS1 interacting protein 2a Unknown 
AA293819 −0.391 Nuclear factor of activated T-cells Transcription 
N72307 −0.391 ESY Unknown 
N91584 −0.390 Ribosomal protein S6 Ribosomal subunit 
AA047812 −0.389 EST Unknown 
AA004801 −0.389 ESTa Unknown 
AA425853 −0.389 Splicing factor proline/glutamine richa RNA process/splicing 
AA464605 −0.388 Kidney ankyrin repeat-containing protein Unknown 
AA447984 −0.388 ESTa Unknown 
AA454193 −0.388 RING1 and YY1 binding protein Transcription 
AA029312 −0.386 NIMA-related kinase 9a Unknown 
T47813 −0.385 Macrophage stimulating 1 Unknown 
AA486402 −0.385 Heterogeneous nuclear ribonucleoprotein Ra RNA processing 
AA460952 −0.385 SIRT1 (sirtuin)a Transcription 
H46487 −0.384 MGAT3 Glycosylation 
H89664 −0.382 Amyloid β (A4) precursor-like protein 2a Blood coagulation 
T67279 −0.381 EST Unknown 
R63918 −0.381 Neuronatina Ion channels 
N90238 −0.381 EST Unknown 
AA488367 −0.381 Host cell factor homolog Unknown 
AA676970 −0.380 EST Unknown 
AA434085 −0.380 Cytoplasmic linker-associated protein 2 Unknown 
AA131909 −0.380 ESTa Unknown 
H29513 −0.378 EST Unknown 
W95041 −0.378 HS3ST3B1a Proteoglycan biosynth. 
AA130870 −0.378 Microtubule-associated protein 4 cytoskeleton 
AA058711 −0.378 Tripartite motif-containing 45 Unknown 
W46420 −0.378 Pecanex homologa Unknown 
AA504858 −0.377 F-box only protein 8 Protein degradation 
R22625 −0.376 Cyclin-dependent kinase 7 Cell cycle 
AA496691 −0.376 Dystroglycan 1 Cytoskeleton 
AA001918 −0.375 ESTa Unknown 
H80749 −0.375 ESTa Unknown 
W15460 −0.373 EST Unknown 
AA448251 −0.373 EST Unknown 
T62131 −0.372 Coagulation factor II (thrombin)a Blood coagulation 
W96114 −0.370 Heterogeneous nuclear ribonucleoprotein H1 (H) RNA processing 
AA187148 −0.369 Core-binding factor, β subunit Transcription 
AA629923 −0.369 pM5 proteina Unknown 
R01340 −0.369 Ubiquitin-conjugating enzyme E2, J1 Protein degradation 
H98534 −0.369 RAB9A, member RAS oncogene family Protein transport 
R02069 −0.368 Heterogeneous nuclear ribonucleoprotein H3a RNA process/splicing 
AA419177 −0.367 SLC7A5 (cationic aa transp, y+ system, memb 5)a Amino acid transport 
AA460968 −0.367 PRKRA Signal transduction 
H09065 −0.367 BRCA1-associated protein-1 Peptidase 
AA284268 −0.366 EST Unknown 
R84263 −0.366 Carbamoyl-phosphate synthetase 2a Pyrimidine pathway 
AA017042 −0.365 HIV-1 Tat interactive proteina Transcription 
AA416759 −0.365 Citrate synthasea Metabolism 
N30075 −0.365 ANKHZN protein Unknown 
W19653 −0.364 EST Unknown 
N90109 −0.364 Nucleolina RNA process/splicing 
AA456868 −0.364 Lamin B2 Nuclear lamina 
AA454585 −0.363 Splicing factor, arginine/serine-rich 2 RNA process/splicing 
AA488447 −0.363 SPTLC1a Sphingolipid biosynth. 
N75595 −0.363 Nuclear transport factor 2 Protein transport 
AA448189 −0.362 EST Unknown 
AA406332 −0.361 Sec23 homolog A Vesicle transport 
T85931 −0.361 EST Unknown 
AA457050 −0.361 Treacher Collins-Franceschetti syndrome 1 Nucleocyto. transp 
W69669 −0.361 EST Unknown 
AA127515 −0.361 Mitochondrial ribosomal protein S7a Unknown 
AccessionCorrelGene nameFunction
AA425754 0.602 NAPA (N-ethyl. sens. factor att. prot α) Vesicle transp. 
AA664179 0.580 Keratin 18 Cytoskeleton 
AA046700 0.576 F-box only protein 32a Prot. degrad. 
N63943 0.570 Lysozyme (renal amyloidosis) Inflammation 
H68885 0.569 TSSC3 (tumor supp. Subtrans. cand 3)a Apoptosis 
AA022679 0.553 ESTa Unknown 
AA490680 0.538 Transcobalamin II; macrocytic anemiaa Vitamin transp. 
AA486275 0.534 Ser/cyst prot. Inhib. clade B, memb. 1 Protease inhib. 
N90783 0.532 Purinergic receptor (family A group 5)a Unknown 
AA464569 0.525 γ Tubulin ring complex protein Cytoskeleton 
AA464578 0.519 rho/rac guanine nucleotide exch. factor 2 Signal transd. 
AA989217 0.508 Ca2+-promoted Ras inactivatora Unknown 
N90281 0.501 B7 protein Unknown 
AA155668 0.501 Regulatory factor X, 2 Transcription 
H58175 0.499 EST Unknown 
AA005410 0.497 EST Unknown 
AA702013 0.494 SLC22A1 (solute carrier family 22) Ion transport 
AA004711 0.491 EST Unknown 
AA699573 0.491 Transcription factor 2, hepatic Unknown 
T51895 0.481 EphB4a Memb. prot. 
N52651 0.480 ESTa Unknown 
R33303 0.475 Prot. kinase, AMP-activated, α1 Kinase 
R54664 0.472 SERPINB1 (ser/cyst prot. inhib, clade B) Protease inhib. 
N89753 0.472 EST Unknown 
H55915 0.471 EST Unknown 
W85876 0.467 ESTa Unknown 
R52797 0.466 Hepatocyte growth factora Growth factor 
AA630354 0.465 Sphingosine kinase 2 Kinase 
H55839 0.458 EST Unknown 
AA454014 0.456 EST Unknown 
N67039 0.456 EST Unknown 
N78909 0.456 EST Unknown 
AA971406 0.455 EST Unknown 
AA424587 0.452 UGCGL2 Unknown 
W90085 0.448 Nuc. receptor subfam 0, gr. B, memb. 2 Transcription 
AA459213 0.445 N2+ channel, nonvoltage-gated 1α Ion channels 
N23399 0.444 ESTa Unknown 
H72588 0.443 EST Unknown 
AA453289 0.439 ZYG homolog Unknown 
R23924 0.438 EST Unknown 
H59559 0.437 ESTa Unknown 
W94880 0.436 HIRA Transcription 
N68327 0.436 EST Unknown 
R00151 0.434 EST Unknown 
AA291491 0.433 DC12 protein Unknown 
W15339 0.427 EST Unknown 
AA455284 0.424 ASC-1 complex subunit P100 Unknown 
AA142917 0.423 EST Unknown 
AA058709 0.422 EST Unknown 
T90374 0.420 EST Unknown 
AA054704 0.420 EST Unknown 
N95187 0.419 EST Unknown 
N22776 0.419 EST Unknown 
H24316 0.419 Aquaporin 1 Water transp 
AA664101 0.418 Aldehyde dehydrogenase 1, member A1 Aldehyde metab. 
N71442 0.418 EST Unknown 
AA620746 0.416 ESTa Unknown 
N63864 0.416 EST Unknown 
AA160670 0.414 Lysophosphatidic acid phosphatase Lipid metab. 
H66150 0.413 WSB1 (SOCS box WD prot. SWiP-1) Unknown 
H68848 0.413 Apolipoprotein H (β2-glycoprotein I) Immunity 
T90369 0.409 EST Unknown 
H86117 0.408 Activity-reg. cytoskeleton-assoc protein Cytoskeleton 
AA418876 0.407 EST Unknown 
H62267 0.407 EST Unknown 
AA406180 0.405 SLC22A1L (solute carrier family 22) Ion transport 
AA037229 0.404 Integrin β3 Cell adhesion 
N75569 0.404 ESTa Unknown 
N50959 0.401 Amine oxidase, copper containing 2 Redox 
H42894 0.401 ESTa Unknown 
R16838 0.400 Cytochrome P450 17 Unknown 
R70888 0.399 ESTa Unknown 
AA150619 0.399 EST Unknown 
H77714 0.396 ESTa Unknown 
N95621 0.396 EST Unknown 
H73013 0.394 EST Unknown 
AA430668 0.394 FCGRT (Fc frag. of IgG recep, transp, α) Immune resp. 
AA136532 0.393 EST Unknown 
AA113881 0.393 Ubiquitin-conjugating enzyme E2G 1 Prot. degrad. 
W92160 0.392 EST Unknown 
T96605 0.390 EST Unknown 
AA465353 0.390 Histone deacetylase 1 Transcription 
N72116 0.389 Solute carrier family 11, member 2a Transport 
R00822 0.388 EST Unknown 
AA935560 0.388 Relaxin 2 Pregnancy 
T58775 0.387 Chemokine (C-C motif) ligand 16a Chemotaxis 
R98262 0.387 EST Unknown 
R33037 0.386 EST Unknown 
AI017703 0.385 EIF3S3 (euk. transl. init. fact 3, subu 3 γ) Translation 
AA400234 0.385 Multiple endocrine neoplasia I Tumor supp. 
AA633882 0.383 GCN5-like 1a Transcription 
AA495936 0.383 Microsomal glutathione S-transferase 1 Glutathio. conj. 
AA845156 0.383 Serine protease inhibitor, Kazal type 1 Protease inhib. 
AA004321 0.382 ESTa Unknown 
N63032 0.381 ESTa Unknown 
H10072 0.381 Neuronal Shc adaptor homolog Unknown 
T97710 0.379 Ladinin 1 Base. membr. 
H88540 0.377 Heat shock protein 86 Protein folding 
R33717 0.377 EST Unknown 
R33537 0.376 Semaphorin 7A Immune resp. 
N68492 0.376 Anaphase-promoting complex 1 Mitosis 
AA424937 0.374 EST Unknown 
AA644550 0.374 Translocase of outer mitochon. Memb. 20 Unknown 
N32811 0.374 EST Unknown 
AA157499 0.373 Mitogen-activated protein kinase 13a S. trans/stress res 15 
W93847 0.373 Mucin 15 Unknown 
AA454584 0.373 ESTa Unknown 
AA701655 0.372 EST Unknown 
N67808 0.371 EST Unknown 
W93024 0.371 EST Unknown 
AA284249 0.370 EST Unknown 
AA609774 0.370 ESTa Unknown 
AA047478 0.369 Coronin, actin-binding protein, 1A Cytoskeleton 
N70057 0.369 Leukocyte-specific transcript 1a Defense/immunity 
W47387 0.368 ESTa Unknown 
R24356 0.367 EST Unknown 
W86860 0.366 Nuclear VCP-like ATP binding 
W86660 0.366 EST Unknown 
R21770 0.365 Down syndrome critical region gene 4 Unknown 
AA479795 0.364 IFN stimulated gene 20 kDa Cell proliferation 
W73966 0.363 EST Unknown 
W72227 0.363 ESTa Unknown 
H91216 0.362 EST Unknown 
W47158 0.362 Engulfment and cell motility 2a Unknown 
AA453288 0.362 ESTa Unknown 
N55067 0.362 RAD23 homolog B DNA repair 
AA419092 0.362 EDG4 Lipid binding 
AA255954 0.361 Golgi complex associated protein 1 Unknown 
AA446027 0.361 Early growth response 2 Transcription 
R32952 0.361 S100 calcium-binding protein P Protein binding 
AA630016 −0.601 Chaperonin containing TCP1, subunit 8 (τ)a Chaperone 
AA431773 −0.577 Fatty acid desaturase 1 Fatty acid metab. 
N20480 −0.553 HSPC157 proteina Unknown 
AA036956 −0.546 K2+ inwardly-rectifying channel, subfam J, memb 8 Ion transport 
R43471 −0.545 Aprataxina Unknown 
AA490390 −0.537 Small acidic protein Unknown 
AA599178 −0.535 Ribosomal protein L27a Ribosome 
W68281 −0.527 MAPKAPK3 Sig. trans/stress 
T98796 −0.524 MEF2C (MADS box transc. enhan. fact 2, pep. C) Transcription 
N30161 −0.521 G-carboxyglutamic acid polypeptide 1a Unknown 
AA446819 −0.520 Ornithine aminotransferase (gyrate atrophy) Amino acid metab. 
AA176220 −0.518 Lsm3 protein RNA processing 
AA448285 −0.515 ESTa Unknown 
T61475 −0.514 EST Unknown 
  Survival of motor neuron protein interacting prot  
T95592 −0.513 1a RNA process/splicing 
R92452 −0.506 Ca2+ channel, voltage-dependent, beta 2 subunit Ion transport 
H68845 −0.503 Peroxiredoxin 2a Redox regulation 
R11047 −0.503 ESTa Unknown 
R60995 −0.498 Cochlin Unknown 
R40897 −0.497 3-Oxoacid CoA transferase Metabolism 
AA598561 −0.497 CD164 antigen, sialomucin Cell adhesion 
AA428181 −0.495 Spindlina C’some seg./repair 
R51912 −0.494 Somatostatin Peptide hormone 
AA418524 −0.491 Phospholipase D2 Signal transduction 
W56770 −0.490 NY-REN-58 antigena Unknown 
AA489275 −0.490 ATPase, Na+/K+ transporting, beta 3 polypeptide Ion transport 
W72466 −0.487 EST Unknown 
T52894 −0.486 Myosin light chain 1 slow a Cytoskeleton 
AA495846 −0.484 Forkhead-like 7 Transcription 
AA629567 −0.482 Heat shock 70-kDa protein 8a Chaperone 
R51818 −0.481 ESTa Unknown 
AA708298 −0.478 ATP5B (ATP synth, H+ transp, mitochon. F1) Ion transport 
W32751 −0.476 ESTa Unknown 
W94106 −0.476 Casein kinase 1, epsilon Signal transduction 
AA034268 −0.474 Glutaredoxin (thioltransferase)a Redox regulation 
AA424566 −0.473 ESTa Unknown 
AA464630 −0.473 Thrombospondin 1a Blood coagulation 
AA936757 −0.472 Heparin-binding growth factor binding protein Signal transduction 
AA663440 −0.472 EST Unknown 
AA669443 −0.471 Eukaryotic translation initiation factor 5a Protein synthesis 
AA428939 −0.470 EST Unknown 
AA455911 −0.470 ABCB1 (MDR/TAP)a Transport/drug resist. 
H94897 −0.468 Glycosyltransferase AD-017a Unknown 
T66840 −0.467 EST Unknown 
AA630784 −0.466 Thyroid hormone receptor interactor 13a Transcription 
AA628430 −0.466 Lsm1 protein RNA processing 
H20652 −0.462 ADP-ribosylation factor-like 6 interacting protein Unknown 
W74133 −0.462 EST Unknown 
W57983 −0.461 Pinin, desmosome associated protein Cell adhesion 
H50886 −0.460 PWP2 periodic tryptophan protein homologa Signal transduction 
H22652 −0.460 Glia maturation factor β Signal transduction 
T67223 −0.457 ESTa Unknown 
AA486919 −0.456 Ribosomal protein L28 Ribosomal subunit 
AA444009 −0.455 Glucosidase α Glycogen catabolism 
N30185 −0.454 EST Unknown 
AA670438 −0.453 Ubiquitin COOH-terminal esterase L1 Protein degradation 
W63789 −0.447 ESTa Unknown 
R14760 −0.443 Caspase 3, apoptosis-related cysteine protease Apoptosis 
H17612 −0.442 Arginase, type IIa NO biosynthesis 
AA126860 −0.442 Amyloid β precursor protein-binding protein 1 Signal transduction 
AA469950 −0.441 ESTa Unknown 
AA496944 −0.440 EST Unknown 
H58119 −0.439 EST Unknown 
AA455497 −0.439 EST Unknown 
R59722 −0.439 EST Unknown 
H24650 −0.438 Laminin γ1 Basement membrane 
N77514 −0.438 EST Unknown 
N73130 −0.438 MAPK-interacting and spindle-stabilizing proteina C’some seg/repair 
AA504656 −0.436 LTBP1 (latent TGFβ-binding protein 1) Protein binding 
R90743 −0.435 MAPK8IP1 Signal transduction 
T84139 −0.434 Holocytochrome c synthase Electron transport 
AA449345 −0.433 ESTa Unknown 
H19822 −0.431 Leucyl-tRNA synthetase Protein synthesis 
AA633577 −0.429 Methylenetetrahydrofolate dehydrogenasea Folate metabolism 
W86876 −0.429 EST Unknown 
AA007509 −0.428 Tetratricopeptide repeat domain 3a Unknown 
R22439 −0.426 Transmembrane protein 4a Membrane associated 
AA454597 −0.426 Golgi phosphoprotein 2 Unknown 
AA290737 −0.426 Glutathione S-transferase M1 Glutathione conj. 
AA173310 −0.425 Like mouse brain protein E46 Unknown 
R44546 −0.422 EST Unknown 
AA676797 −0.422 Cyclin F Cell cycle 
AA486305 −0.420 Solute carrier family 25, member 3 Ion transp, mitochond. 
R55075 −0.420 MpV17 transgene Redox 
R40970 −0.420 ESTa Unknown 
AA426374 −0.420 Tubulin α2a Cytoskeleton 
AA151486 −0.418 Phosphoribosyl pyrophosphate synthetase 2 Nucleic acid metab. 
AA490256 −0.415 G protein, α inhibiting activity polypeptide 3a G-protein signaling 
N89861 −0.415 Mitochondrial ribosomal protein L42a Unknown 
AA443302 −0.414 ras homolog gene family, member Ea GTP-binding protein 
N46831 −0.414 EST Unknown 
N90630 −0.412 YWHAH (tyr 3-m’ox/tryp 5-m’ox activ. prot. eta) Protein binding 
AA481397 −0.412 Phosphodiesterase 4D, cAMP-specific Nucleotide metabolism 
H39187 −0.407 Cadherin, EGF LAG seven-pass G-type receptor2 Unknown 
R19031 −0.406 Cryptochrome 1 Photoreceptor 
AA134871 −0.406 Fibulin 1 Extracellular matrix 
AA669136 −0.405 Transcription factor 4 Transcription 
R87840 −0.405 Intercellular adhesion molecule 5, telencephalin Cell adhesion 
N67822 −0.404 EST Unknown 
AA431885 −0.404 MAP kinase-interacting serine/threonine kinase 1 Signal transduction 
AA676705 −0.403 Cell growth regulatory with ring finger domaina Cell prolif/stress resp. 
R39111 −0.403 Early growth response 3a Transcription 
AA479243 −0.401 Autocrine motility factor receptor Cell motility 
T74606 −0.401 TRAM-like protein Membrane associated 
N20335 −0.400 Clathrin, light polypeptide (Lcb) Vesicle transport 
AA045965 −0.400 Ca2+/calmodulin-dependent serine protein kinase Cell adhesion 
AA063624 −0.400 ESTa Unknown 
AA150683 −0.399 ESTa Unknown 
AA169832 −0.399 3′-Phosphoadenosine 5′-phosphosulfate synth 1a Nuc. acid metabolism 
W69178 −0.398 ESTa Unknown 
R11019 −0.397 Heterogeneous nuclear ribonucleoprotein H1 (H) RNA processing 
T95200 −0.397 KIDDNS220a Unknown 
AA099787 −0.396 Alkylglycerone phosphate synthase Lipid metabolism 
R25825 −0.395 N-Acetylgalactosaminidase αa Unknown 
N50745 −0.393 EST Unknown 
H08548 −0.393 ATP citrate lyasea Metabolism 
AA228130 −0.393 PC4 and SFRS1 interacting protein 2a Unknown 
AA293819 −0.391 Nuclear factor of activated T-cells Transcription 
N72307 −0.391 ESY Unknown 
N91584 −0.390 Ribosomal protein S6 Ribosomal subunit 
AA047812 −0.389 EST Unknown 
AA004801 −0.389 ESTa Unknown 
AA425853 −0.389 Splicing factor proline/glutamine richa RNA process/splicing 
AA464605 −0.388 Kidney ankyrin repeat-containing protein Unknown 
AA447984 −0.388 ESTa Unknown 
AA454193 −0.388 RING1 and YY1 binding protein Transcription 
AA029312 −0.386 NIMA-related kinase 9a Unknown 
T47813 −0.385 Macrophage stimulating 1 Unknown 
AA486402 −0.385 Heterogeneous nuclear ribonucleoprotein Ra RNA processing 
AA460952 −0.385 SIRT1 (sirtuin)a Transcription 
H46487 −0.384 MGAT3 Glycosylation 
H89664 −0.382 Amyloid β (A4) precursor-like protein 2a Blood coagulation 
T67279 −0.381 EST Unknown 
R63918 −0.381 Neuronatina Ion channels 
N90238 −0.381 EST Unknown 
AA488367 −0.381 Host cell factor homolog Unknown 
AA676970 −0.380 EST Unknown 
AA434085 −0.380 Cytoplasmic linker-associated protein 2 Unknown 
AA131909 −0.380 ESTa Unknown 
H29513 −0.378 EST Unknown 
W95041 −0.378 HS3ST3B1a Proteoglycan biosynth. 
AA130870 −0.378 Microtubule-associated protein 4 cytoskeleton 
AA058711 −0.378 Tripartite motif-containing 45 Unknown 
W46420 −0.378 Pecanex homologa Unknown 
AA504858 −0.377 F-box only protein 8 Protein degradation 
R22625 −0.376 Cyclin-dependent kinase 7 Cell cycle 
AA496691 −0.376 Dystroglycan 1 Cytoskeleton 
AA001918 −0.375 ESTa Unknown 
H80749 −0.375 ESTa Unknown 
W15460 −0.373 EST Unknown 
AA448251 −0.373 EST Unknown 
T62131 −0.372 Coagulation factor II (thrombin)a Blood coagulation 
W96114 −0.370 Heterogeneous nuclear ribonucleoprotein H1 (H) RNA processing 
AA187148 −0.369 Core-binding factor, β subunit Transcription 
AA629923 −0.369 pM5 proteina Unknown 
R01340 −0.369 Ubiquitin-conjugating enzyme E2, J1 Protein degradation 
H98534 −0.369 RAB9A, member RAS oncogene family Protein transport 
R02069 −0.368 Heterogeneous nuclear ribonucleoprotein H3a RNA process/splicing 
AA419177 −0.367 SLC7A5 (cationic aa transp, y+ system, memb 5)a Amino acid transport 
AA460968 −0.367 PRKRA Signal transduction 
H09065 −0.367 BRCA1-associated protein-1 Peptidase 
AA284268 −0.366 EST Unknown 
R84263 −0.366 Carbamoyl-phosphate synthetase 2a Pyrimidine pathway 
AA017042 −0.365 HIV-1 Tat interactive proteina Transcription 
AA416759 −0.365 Citrate synthasea Metabolism 
N30075 −0.365 ANKHZN protein Unknown 
W19653 −0.364 EST Unknown 
N90109 −0.364 Nucleolina RNA process/splicing 
AA456868 −0.364 Lamin B2 Nuclear lamina 
AA454585 −0.363 Splicing factor, arginine/serine-rich 2 RNA process/splicing 
AA488447 −0.363 SPTLC1a Sphingolipid biosynth. 
N75595 −0.363 Nuclear transport factor 2 Protein transport 
AA448189 −0.362 EST Unknown 
AA406332 −0.361 Sec23 homolog A Vesicle transport 
T85931 −0.361 EST Unknown 
AA457050 −0.361 Treacher Collins-Franceschetti syndrome 1 Nucleocyto. transp 
W69669 −0.361 EST Unknown 
AA127515 −0.361 Mitochondrial ribosomal protein S7a Unknown 

Gene expression ratios were correlated with 1 μm CPT-induced apoptosis across the panel of 30 colon carcinoma cell lines, and 308 significantly correlated genes were identified.

a

Gene also significantly correlated (in the same orientation) with 5 μm 5-FU-induced apoptosis.

We thank Dr. Geoff Childs and Aldo Massimi for the printing and scanning of cDNA microarrays, Dr. Lauri A. Aaltonen and Päivi Laiho for assistance with determination of the MMR status of cell lines, Dr. Robert Whitehead for provision of LIM1215 and LIM2405 cell lines, Noa Cohen for technical assistance, and Drs. Anna Velcich and John Greally for valuable advice regarding the preparation of the manuscript.

1
Moertel C. G., Fleming T. R., Macdonald J. S., Haller D. G., Laurie J. A., Goodman P. J., Ungerleider J. S., Emerson W. A., Tormey D. C., Glick J. H., et al Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma.
N. Engl. J. Med.
,
322
:
352
-358,  
1990
.
2
Moertel C. G., Fleming T. R., Macdonald J. S., Haller D. G., Laurie J. A., Tangen C. M., Ungerleider J. S., Emerson W. A., Tormey D. C., Glick J. H., et al Fluorouracil plus levamisole as effective adjuvant therapy after resection of stage III colon carcinoma: a final report.
Ann. Intern. Med.
,
122
:
321
-326,  
1995
.
3
Moertel C. G., Fleming T. R., Macdonald J. S., Haller D. G., Laurie J. A., Tangen C. M., Ungerleider J. S., Emerson W. A., Tormey D. C., Glick J. H., et al Intergroup study of fluorouracil plus levamisole as adjuvant therapy for stage II/Dukes’ B2 colon cancer.
J. Clin. Oncol.
,
13
:
2936
-2943,  
1995
.
4
International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators. Efficacy of adjuvant fluorouracil and folinic acid in colon cancer.
Lancet
,
345
:
939
-944,  
1995
.
5
Conti J. A., Kemeny N. E., Saltz L. B., Huang Y., Tong W. P., Chou T. C., Sun M., Pulliam S., Gonzalez C. Irinotecan is an active agent in untreated patients with metastatic colorectal cancer.
J. Clin. Oncol.
,
14
:
709
-715,  
1996
.
6
Cvitkovic E., Bekradda M. Oxaliplatin: a new therapeutic option in colorectal cancer.
Semin. Oncol.
,
26
:
647
-662,  
1999
.
7
de Gramont A., Vignoud J., Tournigand C., Louvet C., Andre T., Varette C., Raymond E., Moreau S., Le Bail N., Krulik M. Oxaliplatin with high-dose leucovorin and 5-fluorouracil 48-hour continuous infusion in pretreated metastatic colorectal cancer.
Eur. J. Cancer
,
33
:
214
-219,  
1997
.
8
Machover D., Diaz-Rubio E., de Gramont A., Schilf A., Gastiaburu J. J., Brienza S., Itzhaki M., Metzger G., N′Daw D., Vignoud J., Abad A., Francois E., Gamelin E., Marty M., Sastre J., Seitz J. F., Ychou M. Two consecutive Phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines.
Ann. Oncol.
,
7
:
95
-98,  
1996
.
9
Longley D. B., Harkin D. P., Johnston P. G. 5-Fluorouracil: mechanisms of action and clinical strategies.
Nat. Rev. Cancer
,
3
:
330
-338,  
2003
.
10
Leichman C. G., Lenz H. J., Leichman L., Danenberg K., Baranda J., Groshen S., Boswell W., Metzger R., Tan M., Danenberg P. V. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin.
J. Clin. Oncol.
,
15
:
3223
-3229,  
1997
.
11
Metzger R., Danenberg K., Leichman C. G., Salonga D., Schwartz E. L., Wadler S., Lenz H. J., Groshen S., Leichman L., Danenberg P. V. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil.
Clin. Cancer Res.
,
4
:
2371
-2376,  
1998
.
12
Salonga D., Danenberg K. D., Johnson M., Metzger R., Groshen S., Tsao-Wei D. D., Lenz H. J., Leichman C. G., Leichman L., Diasio R. B., Danenberg P. V. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase.
Clin. Cancer Res.
,
6
:
1322
-1327,  
2000
.
13
Goh H. S., Yao J., Smith D. R. p53 point mutation and survival in colorectal cancer patients.
Cancer Res.
,
55
:
5217
-5221,  
1995
.
14
Benhattar J., Cerottini J. P., Saraga E., Metthez G., Givel J. C. p53 mutations as a possible predictor of response to chemotherapy in metastatic colorectal carcinomas.
Int. J. Cancer
,
69
:
190
-192,  
1996
.
15
Ahnen D. J., Feigl P., Quan G., Fenoglio-Preiser C., Lovato L. C., Bunn P. A., Jr., Stemmerman G., Wells J. D., Macdonald J. S., Meyskens F. L., Jr. Ki-ras mutation and p53 overexpression predict the clinical behavior of colorectal cancer: a Southwest Oncology Group study.
Cancer Res.
,
58
:
1149
-1158,  
1998
.
16
Barratt P. L., Seymour M. T., Stenning S. P., Georgiades I., Walker C., Birbeck K., Quirke P. DNA markers predicting benefit from adjuvant fluorouracil in patients with colon cancer: a molecular study.
Lancet
,
360
:
1381
-1391,  
2002
.
17
Elsaleh H., Iacopetta B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal carcinoma.
Clin. Colorectal Cancer
,
1
:
104
-109,  
2001
.
18
Elsaleh H., Powell B., McCaul K., Grieu F., Grant R., Joseph D., Iacopetta B. P53 alteration and microsatellite instability have predictive value for survival benefit from chemotherapy in stage III colorectal carcinoma.
Clin. Cancer Res.
,
7
:
1343
-1349,  
2001
.
19
Violette S., Poulain L., Dussaulx E., Pepin D., Faussat A. M., Chambaz J., Lacorte J. M., Staedel C., Lesuffleur T. Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-XL in addition to Bax and p53 status.
Int. J. Cancer
,
98
:
498
-504,  
2002
.
20
Augenlicht L. H., Wadler S., Corner G., Richards C., Ryan L., Multani A. S., Pathak S., Benson A., Haller D., Heerdt B. G. Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial.
Cancer Res.
,
57
:
1769
-1775,  
1997
.
21
Arango D., Corner G. A., Wadler S., Catalano P. J., Augenlicht L. H. c-myc/p53 interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo.
Cancer Res.
,
61
:
4910
-4915,  
2001
.
22
Seoane J., Le H. V., Massague J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage.
Nature (Lond.)
,
419
:
729
-734,  
2002
.
23
Arango D., Mariadason J. M., Wilson A. J., Yang W., Corner G. A., Nicholas C., Aranes M. J., Augenlicht L. H. c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis.
Br. J. Cancer
,
89
:
1757
-1765,  
2003
.
24
Allegra, C. J., Paik, S., Colangelo, L. H., Parr, A. L., Kirsch, I., Kim, G., Klein, P. c-Myc overexpression sensitises colon cancer cells to camptothecin-induced apoptosis. 89: 1757–1765, 2003. Johnston, P. G., Wolmark, N., and Wieand, H. S. Prognostic value of thymidylate synthase, Ki-67, and p53 in patients with Dukes’ B and C colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project collaborative study. J. Clin. Oncol., 21: 241–250, 2003.
25
Johnston P. G., Benson A. B., III, Catalano P., Rao M. S., O’Dwyer P. J., Allegra C. J. Thymidylate synthase protein expression in primary colorectal cancer: lack of correlation with outcome and response to fluorouracil in metastatic disease sites.
J. Clin. Oncol.
,
21
:
815
-819,  
2003
.
26
Berglund A., Edler D., Molin D., Nordlinder H., Graf W., Glimelius B. Thymidylate synthase and p53 expression in primary tumor do not predict chemotherapy outcome in metastatic colorectal carcinoma.
Anticancer Res.
,
22
:
3653
-3659,  
2002
.
27
Findlay M. P., Cunningham D., Morgan G., Clinton S., Hardcastle A., Aherne G. W. Lack of correlation between thymidylate synthase levels in primary colorectal tumours and subsequent response to chemotherapy.
Br. J. Cancer
,
75
:
903
-909,  
1997
.
28
Johnston P. G., Drake J. C., Trepel J., Allegra C. J. Immunological quantitation of thymidylate synthase using the monoclonal antibody TS 106 in 5-fluorouracil-sensitive and -resistant human cancer cell lines.
Cancer Res.
,
52
:
4306
-4312,  
1992
.
29
Mirjolet J. F., Barberi-Heyob M., Merlin J. L., Marchal S., Etienne M. C., Milano G., Bey P. Thymidylate synthase expression and activity: relation to S-phase parameters and 5-fluorouracil sensitivity.
Br. J. Cancer
,
78
:
62
-68,  
1998
.
30
Grem J. L., Danenberg K. D., Behan K., Parr A., Young L., Danenberg P. V., Nguyen D., Drake J., Monks A., Allegra C. J. Thymidine kinase, thymidylate synthase, and dihydropyrimidine dehydrogenase profiles of cell lines of the National Cancer Institute’s Anticancer Drug Screen.
Clin. Cancer Res.
,
7
:
999
-1009,  
2001
.
31
Zembutsu H., Ohnishi Y., Tsunoda T., Furukawa Y., Katagiri T., Ueyama Y., Tamaoki N., Nomura T., Kitahara O., Yanagawa R., Hirata K., Nakamura Y. Genome-wide cDNA microarray screening to correlate gene expression profiles with sensitivity of 85 human cancer xenografts to anticancer drugs.
Cancer Res.
,
62
:
518
-527,  
2002
.
32
Schwartz E. L., Baptiste N., Wadler S., Makower D. Thymidine phosphorylase mediates the sensitivity of human colon carcinoma cells to 5-fluorouracil.
J. Biol. Chem.
,
270
:
19073
-19077,  
1995
.
33
Saito H., Tsujitani S., Oka S., Kondo A., Ikeguchi M., Maeta M., Kaibara N. The expression of thymidine phosphorylase correlates with angiogenesis and the efficacy of chemotherapy using fluorouracil derivatives in advanced gastric carcinoma.
Br. J. Cancer
,
81
:
484
-489,  
1999
.
34
Augenlicht L. H., Wahrman M. Z., Halsey H., Anderson L., Taylor J., Lipkin M. Expression of cloned sequences in biopsies of human colonic tissue and in colonic carcinoma cells induced to differentiate in vitro.
Cancer Res.
,
47
:
6017
-6021,  
1987
.
35
Augenlicht L. H., Taylor J., Anderson L., Lipkin M. Patterns of gene expression that characterize the colonic mucosa in patients at genetic risk for colonic cancer.
Proc. Natl. Acad. Sci. USA
,
88
:
3286
-3289,  
1991
.
36
Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J. P., Coller H., Loh M. L., Downing J. R., Caligiuri M. A., Bloomfield C. D., Lander E. S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Science (Wash. DC)
,
286
:
531
-537,  
1999
.
37
Pomeroy S. L., Tamayo P., Gaasenbeek M., Sturla L. M., Angelo M., McLaughlin M. E., Kim J. Y., Goumnerova L. C., Black P. M., Lau C., Allen J. C., Zagzag D., Olson J. M., Curran T., Wetmore C., Biegel J. A., Poggio T., Mukherjee S., Rifkin R., Califano A., Stolovitzky G., Louis D. N., Mesirov J. P., Lander E. S., Golub T. R. Prediction of central nervous system embryonal tumour outcome based on gene expression.
Nature (Lond.)
,
415
:
436
-442,  
2002
.
38
Augeron C., Laboisse C. L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate.
Cancer Res.
,
44
:
3961
-3969,  
1984
.
39
Whitehead R. H., Macrae F. A., St John D. J., Ma J. A colon cancer cell line (LIM1215) derived from a patient with inherited nonpolyposis colorectal cancer.
J. Natl. Cancer Inst. (Bethesda)
,
74
:
759
-765,  
1985
.
40
Devine P. L., Birrell G. W., Whitehead R. H., Harada H., Xing P. X., McKenzie I. F. Expression of MUC1 and MUC2 mucins by human tumor cell lines.
Tumour Biol.
,
13
:
268
-277,  
1992
.
41
Tibbetts L. M., Chu M. Y., Vezeridis M. P., Miller P. G., Tibbetts L. L., Poisson M. H., Camara P. D., Calabresi P. Cell culture of the mucinous variant of human colorectal carcinoma.
Cancer Res.
,
48
:
3751
-3759,  
1988
.
42
Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers.
Science (Wash. DC)
,
253
:
49
-53,  
1991
.
43
Sjogren S., Inganas M., Norberg T., Lindgren A., Nordgren H., Holmberg L., Bergh J. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry.
J. Natl. Cancer Inst. (Bethesda)
,
88
:
173
-182,  
1996
.
44
Loukola A., Eklin K., Laiho P., Salovaara R., Kristo P., Jarvinen H., Mecklin J. P., Launonen V., Aaltonen L. A. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC).
Cancer Res.
,
61
:
4545
-4549,  
2001
.
45
Monks A., Scudiero D., Skehan P., Shoemaker R., Paull K., Vistica D., Hose C., Langley J., Cronise P., Vaigro-Wolff A., et al Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
J. Natl. Cancer Inst. (Bethesda)
,
83
:
757
-766,  
1991
.
46
Skehan P., Storeng R., Scudiero D., Monks A., McMahon J., Vistica D., Warren J. T., Bokesch H., Kenney S., Boyd M. R. New colorimetric cytotoxicity assay for anticancer-drug screening.
J. Natl. Cancer Inst. (Bethesda)
,
82
:
1107
-1112,  
1990
.
47
Mariadason J. M., Corner G. A., Augenlicht L. H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer.
Cancer Res.
,
60
:
4561
-4572,  
2000
.
48
Mariadason J. M., Arango D., Corner G. A., Aranes M., Hotchkiss K. A., Yang W., Augenlicht L. H. A gene expression profile that defines colon cell maturation in vitro.
Cancer Res.
,
62
:
4791
-4804,  
2002
.
49
Cheung V. G., Morley M., Aguilar F., Massimi A., Kucherlapati R., Childs G. Making and reading microarrays.
Nat. Genet.
,
21
:
15
-19,  
1999
.
50
Eisen M. B., Spellman P. T., Brown P. O., Botstein D. Cluster analysis and display of genome-wide expression patterns.
Proc. Natl. Acad. Sci. USA
,
95
:
14863
-14868,  
1998
.
51
Muller H., Bracken A. P., Vernell R., Moroni M. C., Christians F., Grassilli E., Prosperini E., Vigo E., Oliner J. D., Helin K. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis.
Genes Dev.
,
15
:
267
-285,  
2001
.
52
Efron B., Tibshirani RJ. .
An Introduction to the Bootstrap
, Chapman and Hall New York  
1993
.
53
Roberts D. An isotopic assay for thymidylate synthase.
Biochemistry
,
5
:
3546
-3548,  
1966
.
54
Hotchkiss K. A., Ashton A. W., Klein R. S., Lenzi M. L., Zhu G. H., Schwartz E. L. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration.
Cancer Res.
,
63
:
527
-533,  
2003
.
55
Wilson A. J., Arango D., Mariadason J. M., Heerdt B. G., Augenlicht L. H. TR3/Nur77 in colon cancer cell apoptosis.
Cancer Res.
,
63
:
5401
-5407,  
2003
.
56
Tibbetts L. M., Chu M. Y., Hager J. C., Dexter D. L., Calabresi P. Chemotherapy of cell-line-derived human colon carcinomas in mice immunosuppressed with antithymocyte serum.
Cancer (Phila.)
,
40
:
2651
-2659,  
1977
.
57
Ross D. T., Scherf U., Eisen M. B., Perou C. M., Rees C., Spellman P., Iyer V., Jeffrey S. S., Van de Rijn M., Waltham M., Pergamenschikov A., Lee J. C., Lashkari D., Shalon D., Myers T. G., Weinstein J. N., Botstein D., Brown P. O. Systematic variation in gene expression patterns in human cancer cell lines.
Nat. Genet.
,
24
:
227
-235,  
2000
.
58
Dan S., Tsunoda T., Kitahara O., Yanagawa R., Zembutsu H., Katagiri T., Yamazaki K., Nakamura Y., Yamori T. An integrated database of chemosensitivity to 55 anticancer drugs and gene expression profiles of 39 human cancer cell lines.
Cancer Res.
,
62
:
1139
-1147,  
2002
.
59
Grem J. L., McAtee N., Steinberg S. M., Hamilton J. M., Murphy R. F., Drake J., Chisena T., Balis F., Cysyk R., Arbuck S. G., et al A Phase I study of continuous infusion 5-fluorouracil plus calcium leucovorin in combination with N-(phosphonacetyl)-l-aspartate in metastatic gastrointestinal adenocarcinoma.
Cancer Res.
,
53
:
4828
-4836,  
1993
.
60
Remick S. C., Grem J. L., Fischer P. H., Tutsch K. D., Alberti D. B., Nieting L. M., Tombes M. B., Bruggink J., Willson J. K., Trump D. L. Phase I trial of 5-fluorouracil and dipyridamole administered by seventy-two-hour concurrent continuous infusion.
Cancer Res.
,
50
:
2667
-2672,  
1990
.
61
Doniger S. W., Salomonis N., Dahlquist K. D., Vranizan K., Lawlor S. C., Conklin B. R. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data.
Genome Biol.
,
4
:
R7
2003
.
62
Dahlquist K. D., Salomonis N., Vranizan K., Lawlor S. C., Conklin B. R. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways.
Nat. Genet.
,
31
:
19
-20,  
2002
.
63
Lazaris A. C., Kavantzas N. G., Zorzos H. S., Tsavaris N. V., Davaris P. S. Markers of drug resistance in relapsing colon cancer.
J. Cancer Res. Clin. Oncol.
,
128
:
114
-118,  
2002
.
64
Leppa S., Sistonen L. Heat shock response: pathophysiological implications.
Ann. Med.
,
29
:
73
-78,  
1997
.
65
van Belzen N., Dinjens W. N., Eussen B. H., Bosman F. I. Expression of differentiation-related genes in colorectal cancer: possible implications for prognosis.
Histol. Histopathol.
,
13
:
1233
-1242,  
1998
.
66
Yung B. Y., Yang Y. H., Bor A. M. Nucleolar protein B23 translocation after deferoxamine treatment in a human leukemia cell line.
Int. J. Cancer
,
48
:
779
-784,  
1991
.
67
Hirano J., Wang X., Kita K., Higuchi Y., Nakanishi H., Uzawa K., Yokoe H., Tanzawa H., Yamaura A., Yamamori H., Nakajima N., Nishikiori C., Suzuki N. Low levels of NPM gene expression in UV-sensitive human cell lines.
Cancer Lett.
,
153
:
183
-188,  
2000
.
68
Scorrano L., Korsmeyer S. J. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members.
Biochem. Biophys. Res. Commun.
,
304
:
437
-444,  
2003
.
69
Nita M. E., Nagawa H., Tominaga O., Tsuno N., Fujii S., Sasaki S., Fu C. G., Takenoue T., Tsuruo T., Muto T. 5-Fluorouracil induces apoptosis in human colon cancer cell lines with modulation of Bcl-2 family proteins.
Br. J. Cancer
,
78
:
986
-992,  
1998
.
70
Takechi T., Koizumi K., Tsujimoto H., Fukushima M. Screening of differentially expressed genes in 5-fluorouracil-resistant human gastrointestinal tumor cells.
Jpn. J. Cancer Res.
,
92
:
696
-703,  
2001
.
71
Cohen V., Panet-Raymond V., Sabbaghian N., Morin I., Batist G., Rozen R. Methylenetetrahydrofolate reductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy.
Clin. Cancer Res.
,
9
:
1611
-1615,  
2003
.
72
Petak I., Tillman D. M., Houghton J. A. p53 dependence of Fas induction and acute apoptosis in response to 5-fluorouracil-leucovorin in human colon carcinoma cell lines.
Clin. Cancer Res.
,
6
:
4432
-4441,  
2000
.
73
Carethers J. M., Chauhan D. P., Fink D., Nebel S., Bresalier R. S., Howell S. B., Boland C. R. Mismatch repair proficiency and in vitro response to 5-fluorouracil.
Gastroenterology
,
117
:
123
-131,  
1999
.
74
Hemminki A., Mecklin J. P., Jarvinen H., Aaltonen L. A., Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy.
Gastroenterology
,
119
:
921
-928,  
2000
.
75
Ribic C. M., Sargent D. J., Moore M. J., Thibodeau S. N., French A. J., Goldberg R. M., Hamilton S. R., Laurent-Puig P., Gryfe R., Shepherd L. E., Tu D., Redston M., Gallinger S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.
N. Engl. J. Med.
,
349
:
247
-257,  
2003
.
76
Elsaleh H., Joseph D., Grieu F., Zeps N., Spry N., Iacopetta B. Association of tumor site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer.
Lancet
,
355
:
1745
-1750,  
2000
.
77
Cunningham D., Pyrhonen S., James R. D., Punt C. J., Hickish T. F., Heikkila R., Johannesen T. B., Starkhammar H., Topham C. A., Awad L., Jacques C., Herait P. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer.
Lancet
,
352
:
1413
-1418,  
1998
.
78
Douillard J. Y., Cunningham D., Roth A. D., Navarro M., James R. D., Karasek P., Jandik P., Iveson T., Carmichael J., Alakl M., Gruia G., Awad L., Rougier P. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial.
Lancet
,
355
:
1041
-1047,  
2000
.
79
Bunz F., Hwang P. M., Torrance C., Waldman T., Zhang Y., Dillehay L., Williams J., Lengauer C., Kinzler K. W., Vogelstein B. Disruption of p53 in human cancer cells alters the responses to therapeutic agents.
J. Clin. Investig.
,
104
:
263
-269,  
1999
.
80
Yang B., Eshleman J. R., Berger N. A., Markowitz S. D. Wild-type p53 protein potentiates cytotoxicity of therapeutic agents in human colon cancer cells.
Clin. Cancer Res.
,
2
:
1649
-1657,  
1996
.
81
Meyers M., Wagner M. W., Hwang H. S., Kinsella T. J., Boothman D. A. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses.
Cancer Res.
,
61
:
5193
-5201,  
2001
.
82
Harris A. L. Hypoxia: a key regulatory factor in tumor growth.
Nat. Rev. Cancer
,
2
:
38
-47,  
2002
.
83
Matthews N. E., Adams M. A., Maxwell L. R., Gofton T. E., Graham C. H. Nitric oxide-mediated regulation of chemosensitivity in cancer cells.
J. Natl. Cancer Inst. (Bethesda)
,
93
:
1879
-1885,  
2001
.
84
Sakata K., Kwok T. T., Murphy B. J., Laderoute K. R., Gordon G. R., Sutherland R. M. Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance.
Br. J. Cancer
,
64
:
809
-814,  
1991
.
85
D’Angio C. T., Finkelstein J. N. Oxygen regulation of gene expression: a study in opposites.
Mol. Genet. Metab.
,
71
:
371
-380,  
2000
.
86
Djelloul S., Forgue-Lafitte M. E., Hermelin B., Mareel M., Bruyneel E., Baldi A., Giordano A., Chastre E., Gespach C. Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco-2 cells. Status of the pRb1 and pRb2 tumor suppressor gene products.
FEBS Lett.
,
406
:
234
-242,  
1997
.
87
Wheeler J. M., Beck N. E., Kim H. C., Tomlinson I. P., Mortensen N. J., Bodmer W. F. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1.
Proc. Natl. Acad. Sci. USA
,
96
:
10296
-10301,  
1999
.
88
Jia L. Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T. Screening the p53 status of human cell lines using a yeast functional assay.
Mol. Carcinog.
,
19
:
243
-253,  
1997
.
89
O’Connor P. M., Jackman J., Bae I., Myers T. G., Fan S., Mutoh M., Scudiero D. A., Monks A., Sausville E. A., Weinstein J. N., Friend S., Fornace A. J., Jr., Kohn K. W. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents.
Cancer Res.
,
57
:
4285
-4300,  
1997
.
90
Cottu P. H., Muzeau F., Estreicher A., Flejou J. F., Iggo R., Thomas G., Hamelin R. Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines.
Oncogene
,
13
:
2727
-2730,  
1996
.
91
Rodrigues N. R., Rowan A., Smith M. E., Kerr I. B., Bodmer W. F., Gannon J. V., Lane D. P. p53 mutations in colorectal cancer.
Proc. Natl. Acad. Sci. USA
,
87
:
7555
-7559,  
1990
.
92
Matsui S. I., Arredondo M. A., Wrzosek C., Rustum Y. M. DNA damage and p53 induction do not cause ZD1694-induced cell cycle arrest in human colon carcinoma cells.
Cancer Res.
,
56
:
4715
-4723,  
1996
.
93
Parsons R., Myeroff L. L., Liu B., Willson J. K., Markowitz S. D., Kinzler K. W., Vogelstein B. Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer.
Cancer Res.
,
55
:
5548
-5550,  
1995
.
94
Baker S. J., Preisinger A. C., Jessup J. M., Paraskeva C., Markowitz S., Willson J. K., Hamilton S., Vogelstein B. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis.
Cancer Res.
,
50
:
7717
-7722,  
1990
.
95
Deng G., Chen A., Hong J., Chae H. S., Kim Y. S. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression.
Cancer Res.
,
59
:
2029
-2033,  
1999
.
96
Gayet J., Zhou X. P., Duval A., Rolland S., Hoang J. M., Cottu P., Hamelin R. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines.
Oncogene
,
20
:
5025
-5032,  
2001
.