To explore the role of smoking in breast cancer, we undertook a population-based study to evaluate the prevalence and spectrum of p53 mutations in the breast tumors of smokers and nonsmokers. We evaluated 456 archival invasive breast tumors for mutations in exons 4–8 of the p53 gene, using single-strand conformational polymorphism analysis and manual sequencing. Statistical analyses were performed to determine the association of p53 mutations with clinical and smoking characteristics. Of 108 mutations identified, 77 (71%) were point mutations and 31 (29%) were deletions or insertions. A higher prevalence of p53 mutations was found in the breast tumors of current smokers (36.5%; P = 0.02) compared with never smokers (23.6%), whereas fewer mutations were found in former smokers (16.2%; P = 0.09). After adjustment for age, race, menopausal status, clinical stage, tumor size, and family history of breast cancer, current smokers were significantly more likely to harbor any p53 mutation [odds ratio (OR), 2.11; 95% confidence interval (CI), 1.17–3.78], p53 transversions (OR, 3.37; 95% CI, 1.03–11.06), and G:C→T:A transversions (OR, 10.53; 95% CI, 1.77–62.55) compared with never smokers. Stage at diagnosis did not account for the increase in p53 mutation-positive breast cancer among current smokers. Former smokers were also more likely than never smokers to harbor G:C→T:A transversions (OR, 2.43; 95% CI, 0.37–15.73), although this association was not statistically significant. Among former smokers, the prevalence of p53 mutations varied with time since quitting: former smokers who quit smoking for longer than 1 year had a lower prevalence of p53 mutations (10.5% for 1–5 years and 12.9% for >5 years) than those who had stopped smoking within the year of their cancer diagnosis (26.3%). Our results indicate that cigarette smoking appears to modify the prevalence and spectrum of p53 mutations in breast tumors. Moreover, the difference in mutational spectra observed between smokers and nonsmokers is suggestive of the genotoxic effects of smoking in breast tissue.

Breast cancer is the second leading cause of cancer-related deaths in American women (1). Epidemiological evidence suggests that breast cancer development is influenced by a variety of environmental and behavioral factors. The majority of breast cancer risk factors identified to date are reproductive or hormonal factors that increase estrogen exposure; however, these generally demonstrate only modest associations with breast cancer (2).

Cigarette smoking is a well-known risk factor for several cancers, including those of the lung (3), head and neck (4, 5), and bladder (6). Some studies suggest that female smokers sustain more genetic damage (7, 8, 9) and are at greater risk of developing lung or bladder cancer (19, 20, 12) compared with males exposed to comparable quantities of tobacco smoke. Although smoking is a major risk factor for some cancers, the relationship between smoking and breast cancer risk has remained controversial despite considerable research. Most epidemiological studies on smoking and breast cancer have demonstrated a weak positive (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27) or null association (28, 29, 30, 31, 32), whereas others detected a weak inverse association (33, 34, 35, 36, 37).

Among positive studies, increases in breast cancer risk were seen among subsets of women, including those who started smoking at an early age (13, 24, 25), those who were heavy smokers and/or who had smoked for a long time (13, 14, 15, 16, 17), postmenopausal former smokers (19, 20, 21), or those with a high-risk carcinogen-metabolizing enzyme genotype (21). An association between passive tobacco smoke exposure and the occurrence of breast cancer has also been observed in several studies (24, 26, 32). Furthermore, exclusion of passive smokers from the reference group has helped to reveal positive associations between active smoking and breast cancer (22, 24, 26). Some epidemiological studies have found weak protective effects of smoking for either sporadic breast cancer (33, 34, 35, 36) or in carriers of BRCA1 or BRCA2 mutations (37). This putative protective effect is thought to be mediated by the antiestrogenicity of tobacco smoke, which is suggested by studies demonstrating that women who smoke have lower urinary estrogen levels, decreased bone density, and earlier age at menopause than do nonsmokers (38, 39, 40, 41, 42). Cigarette smoking has also been linked to shorter survival among breast cancer patients, although the basis for this effect is unclear (43, 44).

In contrast to the epidemiological studies, results of in vitro, animal, and human biomarker studies strongly suggest that breast tissue is a target for the carcinogenic effects of tobacco smoke. Tobacco smoke contains a mixture of highly mutagenic compounds, including PAHs,3 aromatic amines, and N-nitrosamines, that act in the initiation and/or promotion of neoplasia (45). The tobacco smoke PAH, BaP, is one of the most potent carcinogenic compounds in vivo and in vitro(46) and is a major constituent of tobacco smoke (47). The tobacco-specific nitrosamine NNK [4-(methylnitrososamino)-1-(3-pyridyl)-1-butanone], is a potent lung carcinogen in animals (47), and metabolites of NNK have been detected in nonsmoking women exposed to passive cigarette smoke (48). The PAHs are lipophilic, are stored in adipose tissue (49), are metabolized and activated by human mammary epithelial cells (50), and cause mammary tumors in rodents (51). Human mammary lipid extracts have been shown to induce DNA damage in breast epithelial cells (52), and tobacco-related mutagens have been isolated from the breast fluid of smokers (53). Furthermore, BaP-like DNA adducts have been identified in histologically normal breast tissues of breast cancer patients (54). These observations provide evidence that tobacco smoke constituents reach breast tissue and suggest their potential for involvement in human breast carcinogenesis.

Mutations in the p53 tumor suppressor gene have been found in 15–30% of breast cancers (55, 56, 57) and are thought to be associated with poor clinical prognosis (58, 59, 60, 61, 62, 63, 64, 65). The p53 protein functions as a transcription factor and regulates cell proliferation, DNA repair, differentiation, and apoptosis (66). Studies have demonstrated that certain mutagenic carcinogens leave their “fingerprint” on the DNA in the form of specific patterns of mutation in the p53 gene, revealing important clues for disease etiology (55). Examples of p53 mutational fingerprints associated with specific carcinogen exposures include the high proportion of G:C→T:A transversions in the lung tumors of smokers, the high frequency of G:C→T:A transversions at p53 codon 249 in hepatocellular carcinomas associated with aflatoxin exposure, and CC→TT mutations in skin cancers associated with exposure to UV radiation (55). Previous studies have suggested that the p53 mutational spectrum in breast cancer bears some similarity to both lung cancer and colon cancer, exhibiting a substantial proportion of G:C→T:A transversions, similar to lung cancer (55, 56, 67), but also a high proportion of G:C→A:T transitions at CpG sites as well as deletions and insertions, as in colon cancer (55, 56). These studies, however, did not specifically assess the effects of tobacco smoke exposure on the pattern of p53 mutations in breast cancer.

This report extends the work of previous studies by providing data on the link between cigarette smoking and p53 mutational status and spectrum within breast cancer. Analysis of a population-based series of breast cancer cases from the CBCS (68) demonstrates that smoking is associated with the p53 mutational status of breast tumors and that differences in the p53 mutational spectrum between smokers and nonsmokers are consistent with those found in lung cancer, thus implicating smoking in breast carcinogenesis.

Study Population.

The CBCS is a population-based, case-control study of breast cancer. Participants include women 20–74 years of age residing in 24 contiguous counties of central and eastern North Carolina (68). Women with a first diagnosis of invasive breast cancer between 1993 and 1996 (Phase 1 of the CBCS) were identified by the North Carolina Central Cancer Registry through a rapid case ascertainment system. Women diagnosed before age 50 and African-American women were oversampled to ensure that they comprised roughly half the study sample. Additional details of the study design are described elsewhere (19, 68, 69). All aspects of this research were approved by the University of North Carolina School of Medicine Institutional Review Board. A total of 861 breast cancer cases were eligible for and consented to participate in Phase 1 of the CBCS. Epidemiological risk factor information, including smoking history, was obtained from questionnaires that were administered to participants in their homes by trained nurse-interviewers (19). Smoking status (or ever smoker) was defined on the basis of lifetime exposure to at least 100 cigarettes. Current smokers were women who smoked at the time of diagnosis, whereas former smokers quit smoking any time before diagnosis (19). Clinical data and information on tumor characteristics were obtained from medical records or direct histopathological review of tumor tissue.

Tumor Tissue Preparation and Histopathological Evaluation.

Formalin-fixed, paraffin-embedded tumor blocks were obtained from pathology departments at participating hospitals for 798 of the 861 breast cancer cases. Tumors were sectioned as described previously (70) and underwent standardized histopathological review by the study pathologist (J. Geradts). The invasive cancer area was selectively dissected, and DNA lysates were prepared for molecular analyses by a proteinase K extraction method as described previously (71, 72). In the present study, we analyzed the p53 mutational status of breast tumors from 456 of the 798 cases for whom tumor blocks were available. Of the 342 cases not evaluated, 114 were determined by histopathological review to have insufficient tumor volume for molecular analysis, 24 tumors could not be assessed because of poor DNA quality, and the remaining 204 tumors have not yet been evaluated.

p53 Mutation Screening.

Mutations in exons 4–8 of the p53 gene were evaluated by a screening algorithm incorporating SSCP analysis and manual DNA sequencing (71, 72). Briefly, PCR amplification was carried out for individual exons 5–8, whereas exon 4 was amplified as two overlapping segments. SSCP analysis of each exon was conducted at both 25°C and 4°C to increase the sensitivity of mutation detection. Samples exhibiting abnormal band migration at either temperature were sequenced in the forward and reverse DNA strands. Mutations were confirmed by sequencing of a second, separately amplified PCR product to rule out the possibility of artifactual mutations (73). Fifty randomly selected samples that exhibited no abnormalities on SSCP analysis were also sequenced, and in no case did we detect mutations.

IARC p53 Mutation Database.

Archived data on p53 mutations in breast cancer were downloaded from the most recent version (June 2001) of the IARC p53 Mutation Database.4 The p53 information in IARC selected for comparison with CBCS data was from primary breast tumors from females obtained through surgery or biopsy; cell line data were excluded from analysis. Only mutations in exons 5–8 and the flanking introns were evaluated, whereas exon 4 data were excluded because of the incomplete nature of this information in the IARC database.

Statistical Analysis.

p53 mutations were evaluated for prevalence and type. Using SAS software (SAS Institute, Cary, NC), we used χ2 statistics and logistic regressions to measure the association between p53 mutations and smoking status or other characteristics.

Characteristics of Breast Cancer Cases Evaluated for p53 Mutations.

Tumor blocks were obtained for 798 of 861 (93%) breast cancer patients who consented to participate in Phase 1 of the CBCS. Of these, 456 tumors having sufficient quantity and quality of tumor tissue for molecular analysis were evaluated for p53 mutations. Slightly more than half (57.5%) of the 456 breast cancer patients were younger than 50 years of age, and 38.2% were African American, consistent with the sampling scheme for the study (Table 1). The majority of patients had stage I or II disease. Patients evaluated for p53 mutations had somewhat higher clinical stage (38.9% stage 1, 48.0% stage II; P = 0.06) and were more likely to be lymph node positive (41.2%; P = 0.008) than those who were not evaluated (n = 405; 46.1% stage 1, 43.9% stage II; 32.2% node positive). The 456 cases who were evaluated for p53 mutations did not differ from those who were not evaluated with regard to smoking status (P = 0.63).

Former smokers were slightly older, whereas current smokers were somewhat younger and were more frequently white than were never smokers; however, these differences were not statistically significant (Table 1). The breast tumors of ever smokers were not significantly different from those of never smokers with respect to stage, size, node status, ER or PR status, or histological characteristics.

p53 Mutations Identified in Breast Tumors.

A total of 108 p53 mutations were identified among the 456 breast tumors evaluated, with 1 mutation detected per tumor, for a prevalence of 24%. Of the 108 mutations, 77 (71%) were point mutations and 31 (29%) were deletions or insertions ranging in size from 1 to 15 bp (Table 2). The complete list of mutations identified is given in Table 3. Point mutations occurring at hotspot codons 175, 248, 249, 273, and 282 comprised 35.1% of all point mutations. p53 mutations were significantly associated with stage II disease or greater, larger tumor size, ER and PR negativity, higher mitotic index, poor degree of differentiation, marked nuclear atypia, and high tumor grade, but not with lymph node positivity (Table 4).

The prevalence of p53 mutations was higher in premenopausal breast cancer cases (27.5%) than in postmenopausal cases (19.9%; P = 0.05) and was also slightly higher in African-American women (26%) than in white women (21%; P = 0.22); however, the difference was not statistically significant. When stratified by stage, the prevalence of p53 mutations was identical (20%) in African-American and white women with stage 3 and 4 disease and slightly, but not significantly higher in African-American than in white women with stage 1 (17.3 and 14.4%, respectively; P = 0.63) and stage 2 disease (34.2 and 27.1%, respectively; P = 0.30). Overall, the p53 mutational spectrum in African Americans was similar to that in whites. Although somewhat more G:C→T:A transversions and A:T→G:C transitions were observed in blacks (12.5 and 6.7%, respectively) than in whites (6.0 and 3.3%, respectively), these differences were not significant (P = 0.30 for G:C→T:A and P = 0.26 for A:T→G:C, compared with all other mutations).

Comparison of p53 Mutational Spectra in CBCS and IARC.

To determine whether the mutational spectrum in the CBCS was consistent with the cumulative p53 data collected for breast cancer, we compared the distribution of p53 mutation types among the primary breast tumors of the CBCS with those listed for breast cancer in the most recent, updated version (2001) of the IARC p53 Mutation Database. This comparison was restricted to exons 5–8 of p53 because only partial data exist in this database for other exons, including exon 4. As shown in Fig. 1, the spectrum of 94 mutations in exons 5–8 in the CBCS was not statistically different from that observed among 562 breast tumor mutations in the IARC p53 database (P = 0.35).

p53 Mutations and Smoking.

A higher prevalence of p53 mutations was found in the breast tumors of current smokers (36.5%; P = 0.02) than in the tumors of never smokers (23.6%; Table 5). Somewhat fewer mutations were found among former (16.2%) than never smokers, but the difference was not statistically significant (P = 0.09). Transversion mutations occurred more frequently in the breast tumors of both current (8.2%; P = 0.03) and former smokers (4.9%; P = 0.05) compared with never smokers (3.1%). After adjustment for age, race, stage, tumor size, menopausal status, and family history of breast cancer, current smokers were significantly more likely to harbor any p53 mutations (OR, 2.11; 95% CI, 1.17–3.78), p53 transversions (OR, 3.37; 95% CI, 1.03–11.06), and G:C→T:A transversions (OR, 10.53; 95% CI, 1.77–62.55) compared with never smokers (Table 5). Former smokers were also somewhat more likely to harbor G:C→T:A transversions compared with never smokers (OR, 2.43; 95% CI, 0.37–15.73), although this difference was not significant. Further adjustment for ER and PR status, combined tumor grade, histological characteristics, alcohol consumption, body mass index, age at menarche, age at first full-term pregnancy, parity, oral contraceptive use, benign breast biopsy, or education level did not alter the associations of p53 mutation with current or former smoking (data not shown).

The distribution of p53 mutation types in the 108 mutation-positive tumors, according to smoking status, are shown in Fig. 2. The p53 mutational spectra revealed a significantly greater proportion of G:C→T:A transversions in the breast tumors of current smokers (16.1% of all mutations; P = 0.04) compared with never smokers (3.7%). The proportion of G:C→T:A transversions observed in former smokers (13.0%) was similar to that in current smokers. The majority of G:C→T:A transversions (75.0%) in current and former smokers occurred on the nontranscribed DNA strand. Several additional shifts in the mutational spectrum previously noted in the lung tumors of smokers also were observed in the breast tumors of current smokers relative to never smokers, although these were not statistically significant. For example, among current smokers, 9.7% of mutations were A:T→G:C transitions compared with 3.7% in never smokers (P = 0.27), 25.8% of mutations were G:C→A:T transitions at CpG sites compared with 33.3% in never smokers (P = 0.47), and 22.6% of mutations were deletions and insertions compared with 31.5% in never smokers (P = 0.38).

Current and former smokers differed significantly in their tobacco smoke exposure characteristics: 74.1% of current smokers versus 35.9% of former smokers reported smoking for >20 years (P = 0.001), and three times as many current smokers (29.4%) as former smokers (10.6%) began smoking at ≤15 years of age (P = 0.001). Whereas the duration of tobacco smoke exposure was not correlated with the prevalence of p53 mutations overall in current and former smokers, we observed significantly more G:C→A:T transitions at non-CpG sites (26.9% of mutations; P = 0.05) and slightly, but not significantly, more G:C→T:A transversions (19.2% of mutations; P = 0.38) among cases who smoked >20 years compared with those who smoked for <20 years (7.1% G:C→A:T at non-CpG; 10.7% G:C→T:A). Among former smokers, the prevalence of p53 mutations was lower than among current smokers and varied with time since quitting. Compared with current smokers (36.5%), the mutation prevalence was 26.3% among former smokers who quit within 1 year of diagnosis, 10.5% among those who quit between 1 and 5 years before diagnosis, and 12.9% among those who quit >5 years before diagnosis (P = 0.001, Mantel-Haenzel χ2).

A previous report from the CBCS suggested that smoking was associated with an increased risk of breast cancer among postmenopausal former smokers (19). Examination of the p53 mutational spectra revealed a marginally significant increase in the proportion of G:C→T:A transversions (15.2% of mutations) among postmenopausal women compared with premenopausal women (4.8%; P = 0.06). Premenopausal and postmenopausal women were also evaluated according to smoking status, although the numbers of mutations in each strata were small. Among premenopausal cases, G:C→T:A transversions were found only in current smokers (3 of 20 mutations, or 15% of total mutations). Among postmenopausal cases, G:C→T:A transversions comprised 2 of 22 (9.1%) mutations in never smokers, 3 of 13 (23.1%) mutations in former smokers, and 2 of 11 (18.2%) mutations in current smokers (P = 0.51).

In the present study, we showed that the p53 mutational spectrum obtained in the CBCS, a large population-based series of primary invasive breast tumors, is similar to the mutational spectrum represented for breast cancer in the IARC p53 Mutation Database. Furthermore, we demonstrated that cigarette smoking is associated with both the prevalence and spectrum of p53 mutations in breast tumors. Past studies suggested that the p53 mutational pattern in breast cancer exhibited some similarity to the spectra observed in certain smoking-associated malignancies, particularly lung cancer (56, 67, 74, 75, 76, 77, 78, 79); however, associations with smoking were not evaluated. In the CBCS, the mutational spectrum in the breast tumors of smokers was characterized by a statistically significant increase in the proportion of G:C→T:A transversions, most of which occurred on the nontranscribed DNA strand. Also among smokers, there was some suggestion of increased A:T→G:C transitions and decreased G:C→A:T transitions at CpG sites, as has been observed previously in the lung tumors of smokers (67), although these differences were not statistically significant. The increased prevalence of G:C→T:A mutations among smokers supports the mutagenic, DNA-damaging effect of cigarette smoking in breast tissue and thus provides further evidence implicating tobacco smoke exposure in human breast carcinogenesis.

The breast tumors of patients who were long-term (>20 year) ever smokers had the most pronounced smoking-associated mutational pattern, with a significantly higher proportion of G:C→A:T transitions at non-CpG sites and slightly, but not significantly, more G:C→T:A transversions than for patients who smoked for <20 years. Mutational changes at guanine bases, such as G:C→T:A transversions and G:C→A:T transitions at non-CpG sites, are consistent with exposure to metabolically activated carcinogens, including BaP and N-nitrosamines in tobacco smoke (46). In fact, studies by Denissenko et al.(80) have demonstrated the preferential formation of BaP adducts at guanine bases in the hotspot codons of p53 that are frequently mutated in lung cancer. Increased A:T→G:C mutations have also been found in the lung tumors of smokers, but have not been attributed to a particular component of tobacco smoke (8, 81).

Breast cancer patients who smoked at the time of diagnosis (current smokers) were significantly more likely to have p53 mutation-positive cancer compared with never smokers, consistent with previous studies that reported elevated levels of p53 mutations among smokers with cancers of the lung, bladder, esophagus, and head and neck (55, 67, 74, 82). Our results are also consistent with the study of Gammon et al.(83), who found that p53 protein overexpression in breast tumors detected by immunohistochemistry was associated with current cigarette smoking. The increased prevalence of p53 mutation-positive breast cancer among current smokers in our study was not attributable to their diagnosis with more advanced cancers: current smokers were clinically similar to never smokers, and adjustment for stage, tumor size, node status, and other potential confounders such as ER status or tumor grade, did not appreciably alter the association of p53 mutation with smoking status.

In contrast to current smokers, former smokers overall were less likely than never smokers to have p53 mutation-positive breast cancer. Additionally, among the former smokers, the prevalence of p53 mutations varied with time since quitting, being highest among recent quitters who stopped smoking within the year of their cancer diagnosis. The occurrence of p53 mutations in breast tumors, therefore, appears to be most closely related to tobacco smoke exposure around the time of cancer diagnosis. Despite their lower prevalence of p53 mutations, former smokers exhibited a mutational spectrum similar to that of current smokers, characterized primarily by an increased proportion of G:C→T:A transversions. Therefore, ever (current and former) smokers were most clearly distinguished from never smokers by G:C→T:A transversions.

That current and former smoking appears to have opposing effects on the p53 mutational status of breast tumors is not surprising in light of the conflicting epidemiological literature (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37) and may lend biological support to the theory that smoking has dual carcinogenic and antiestrogenic effects on breast tissue that vary with the characteristics of exposure. Several prior studies, including the CBCS, suggested that some subsets of postmenopausal women may be at increased risk of breast cancer attributable to smoking (19, 20, 21). Interestingly, we found a marginally significant increase in the proportion of G:C→T:A transversions in p53 among postmenopausal women compared with premenopausal women. Although the numbers were too small to be statistically significant, the postmenopausal former and current smokers exhibited the highest proportion of G:C→T:A transversions.

Although the exact mechanisms responsible for the observed association between smoking and p53 mutational status of breast cancers are unclear, several possibilities in addition to the genotoxicity of cigarette smoke seem plausible. An induction of DNA repair could contribute to the decreased mutation level among former smokers (84). Alternatively, modulation of p53 mutational status might occur through the tumor promotional (85, 86, 87) or antiestrogenic activity of tobacco smoke or possible effects on ER. Cigarette smoking increases the metabolism of estradiol (38), and recent reports demonstrate the existence of regulatory cross-talk between p53 and ER-mediated signaling pathways (88, 89, 90, 91, 92) and between ER and the aryl hydrocarbon receptor, both of which bind tobacco smoke constituents (93, 94, 95). Such inter-regulation might underlie the association between the p53 mutation positivity of breast tumors and loss of ER expression observed in this and other studies (59, 61, 63, 64, 96, 97, 98, 99). Additional research is clearly needed to decipher the mechanisms through which smoking modifies the p53 mutational status of breast cancer.

In addition to the etiological implications of our work, our results also have potential clinical significance. Cigarette smoking during the period immediately preceding breast cancer diagnosis was associated with an increase in p53 mutation-positive breast cancer. This raises the possibility that active smoking could, through its effect on p53 status, be associated with the development of more clinically aggressive breast tumors. Previous studies have suggested that p53 mutations are an independent prognostic factor associated with poorer survival in node-negative and -positive breast cancer patients (59, 61, 63, 64, 99). Although the breast cancer cases in our study were not followed to ascertain survival, p53 mutation positivity was significantly associated with clinical or histological features generally thought to be markers of poor prognosis, including larger tumor size, stage II disease or greater, ER and PR negativity, high mitotic index, and high tumor grade. In addition, current smoking was associated with increased prevalence of p53 mutations across all stages, grades, and hormone receptor expression subgroups of breast cancer. Several reports have attributed increased breast cancer mortality among smokers to a delay in seeking care, resulting in their diagnosis with more advanced cancers (43, 44). However, our findings suggest that the difference in mortality may have a biological basis.

The relationship between tobacco smoking and breast cancer is of major public health and clinical importance. Our data indicate that cigarette smoking may influence the pattern and presence of p53 mutations in breast tumors, which potentially affects the aggressiveness of the tumor. We observed a positive association between p53 mutation-bearing breast tumors and current smoking status and found that the p53 mutational fingerprint in breast cancers of smokers compared with nonsmokers was consistent with that seen in lung cancer. Because cigarette smoking is a modifiable risk factor, the prevention or cessation of smoking may reduce both the genetic damage associated with cigarette smoking and the incidence of more clinically aggressive, p53 mutation-positive breast cancers.

Fig. 1.

Comparison of the mutational spectra within exons 5–8 of p53 in breast tumors of the CBCS (n = 94) and in the IARC p53 database (n = 562). The breast tumors in the IARC database that were selected for comparison were primary tumors from females derived from surgery or biopsy. Cell line data were excluded from analysis, as was exon 4 data because of the incomplete nature of this information in the IARC database. The p53 mutational pattern in the CBCS was not statistically different from that in the IARC database (P = 0.35). Del, deletion; Ins, insertion.

Fig. 1.

Comparison of the mutational spectra within exons 5–8 of p53 in breast tumors of the CBCS (n = 94) and in the IARC p53 database (n = 562). The breast tumors in the IARC database that were selected for comparison were primary tumors from females derived from surgery or biopsy. Cell line data were excluded from analysis, as was exon 4 data because of the incomplete nature of this information in the IARC database. The p53 mutational pattern in the CBCS was not statistically different from that in the IARC database (P = 0.35). Del, deletion; Ins, insertion.

Close modal
Fig. 2.

Comparison of the p53 mutational spectra in the mutation-positive breast tumors of never (n = 52), former (n = 23), and current smokers (n = 30) in the CBCS. Current smokers had significantly more G: C→T: A transversions than never smokers (P = 0.04 versus all other mutations). Del, deletion; Ins, insertion

Fig. 2.

Comparison of the p53 mutational spectra in the mutation-positive breast tumors of never (n = 52), former (n = 23), and current smokers (n = 30) in the CBCS. Current smokers had significantly more G: C→T: A transversions than never smokers (P = 0.04 versus all other mutations). Del, deletion; Ins, insertion

Close modal

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

We acknowledge the support of UNC Breast Cancer SPORE Grant CA58223 from the National Cancer Institute.

3

The abbreviations used are: PAH, polycyclic aromatic hydrocarbon; BaP, benzo[a]pyrene; CBCS, Carolina Breast Cancer Study; SSCP, single-strand conformational polymorphism; ER, estrogen receptor; PR, progesterone receptor; OR, odds ratio; CI, confidence interval.

4

http://www.iarc.fr/p53.

Table 1

Characteristics of smoking and nonsmoking breast cancer patients in the CBCS evaluated for p53 mutations

CharacteristicTotalSmoking statusP              a
NeverFormerCurrent
n%n%n%n%
Age          
 <50 years 262 57.5 128 55.9 78 54.9 56 65.9 0.22 
 50+ years 194 42.5 101 44.1 64 45.1 29 34.1  
Race          
 Caucasian 282 61.8 132 57.6 95 66.9 55 64.7 0.17 
 African American 174 38.2 97 42.4 47 33.1 30 35.3  
Menopausal status          
 Premenopausal 225 49.3 112 48.9 64 45.1 49 57.6 0.18 
 Postmenopausal 231 50.7 117 51.1 78 54.9 36 42.4  
Family history of breast cancer          
 No 377 84.9 193 86.9 116 82.9 68 82.9 0.49 
 Yes 67 15.1 29 13.1 24 17.1 14 17.1  
Stageb          
 I 163 38.9 79 36.9 54 42.2 30 39.0 0.59 
 II 201 48.0 107 50.0 58 45.3 36 46.8  
 III 43 10.2 23 10.8 10 7.8 10 13.0  
 IV 12 2.9 2.3 4.7 1.3  
Primary tumor size          
 ≤2 cm 231 53.1 113 51.4 78 57.8 40 50.0 0.41 
 >2 cm 204 46.9 107 48.6 57 42.2 40 50.0  
Node status          
 Negative 177 41.2 89 41.0 56 41.8 32 40.5 0.98 
 Positive 253 58.8 128 59.0 78 58.2 47 59.5  
ER and PR status          
 ER+/PR+ 219 50.5 105 48.2 76 55.9 38 47.5 0.77 
 ER+/PR− 43 9.9 21 9.6 14 10.3 10.0  
 ER−/PR+ 32 7.4 18 8.3 6.6 6.3  
 ER−/PR− 140 32.3 74 33.9 37 27.2 29 36.3  
Mitotic indexc          
 ≤10 267 59.3 134 59.3 86 61.9 47 55.3 0.62 
 >10 183 40.7 92 40.7 53 38.1 38 44.7  
Histological grade          
 Well to moderately differentiated 159 35.2 81 35.5 47 33.8 31 36.5 0.91 
 Poorly differentiated 293 64.8 147 64.5 92 66.2 54 63.5  
Nuclear grade          
 Slight to moderate atypia 276 60.9 135 59.2 91 65.0 50 58.8 0.49 
 Marked atypia 177 39.1 93 40.8 49 35.0 35 41.2  
Combined tumor graded          
 I 122 27.1 63 27.9 32 23.0 27 31.8 0.23 
 II 144 32.0 69 30.5 54 38.8 21 24.7  
 III 184 40.9 94 41.6 53 38.1 37 43.5  
CharacteristicTotalSmoking statusP              a
NeverFormerCurrent
n%n%n%n%
Age          
 <50 years 262 57.5 128 55.9 78 54.9 56 65.9 0.22 
 50+ years 194 42.5 101 44.1 64 45.1 29 34.1  
Race          
 Caucasian 282 61.8 132 57.6 95 66.9 55 64.7 0.17 
 African American 174 38.2 97 42.4 47 33.1 30 35.3  
Menopausal status          
 Premenopausal 225 49.3 112 48.9 64 45.1 49 57.6 0.18 
 Postmenopausal 231 50.7 117 51.1 78 54.9 36 42.4  
Family history of breast cancer          
 No 377 84.9 193 86.9 116 82.9 68 82.9 0.49 
 Yes 67 15.1 29 13.1 24 17.1 14 17.1  
Stageb          
 I 163 38.9 79 36.9 54 42.2 30 39.0 0.59 
 II 201 48.0 107 50.0 58 45.3 36 46.8  
 III 43 10.2 23 10.8 10 7.8 10 13.0  
 IV 12 2.9 2.3 4.7 1.3  
Primary tumor size          
 ≤2 cm 231 53.1 113 51.4 78 57.8 40 50.0 0.41 
 >2 cm 204 46.9 107 48.6 57 42.2 40 50.0  
Node status          
 Negative 177 41.2 89 41.0 56 41.8 32 40.5 0.98 
 Positive 253 58.8 128 59.0 78 58.2 47 59.5  
ER and PR status          
 ER+/PR+ 219 50.5 105 48.2 76 55.9 38 47.5 0.77 
 ER+/PR− 43 9.9 21 9.6 14 10.3 10.0  
 ER−/PR+ 32 7.4 18 8.3 6.6 6.3  
 ER−/PR− 140 32.3 74 33.9 37 27.2 29 36.3  
Mitotic indexc          
 ≤10 267 59.3 134 59.3 86 61.9 47 55.3 0.62 
 >10 183 40.7 92 40.7 53 38.1 38 44.7  
Histological grade          
 Well to moderately differentiated 159 35.2 81 35.5 47 33.8 31 36.5 0.91 
 Poorly differentiated 293 64.8 147 64.5 92 66.2 54 63.5  
Nuclear grade          
 Slight to moderate atypia 276 60.9 135 59.2 91 65.0 50 58.8 0.49 
 Marked atypia 177 39.1 93 40.8 49 35.0 35 41.2  
Combined tumor graded          
 I 122 27.1 63 27.9 32 23.0 27 31.8 0.23 
 II 144 32.0 69 30.5 54 38.8 21 24.7  
 III 184 40.9 94 41.6 53 38.1 37 43.5  
a

Current and former smokers compared with never smokers (χ2 test).

b

According to the AJCC breast tumor staging guidelines.

c

Per 10 high-power fields.

d

Composite score based on mitotic index, histological grade, and nuclear grade.

Table 2

p53 mutations identified in breast tumors

Mutation typep53 mutations
No. identified% of total
Point mutations   
 Transitions (n = 56)   
  G:C→A:T at CpG 31 28.7 
  G:C→A:T at non-CpG 19 17.6 
  A:T→G:C 5.6 
 Transversions (n = 21)   
  G:C→T:A 10 9.3 
  T:A→G:C 1.8 
  G:C→C:G 6.5 
  A:T→T:A 1.8 
 Subtotal 77 71.3 
Deletions and Insertions 31 28.7 
 Total 108 100 
Mutation typep53 mutations
No. identified% of total
Point mutations   
 Transitions (n = 56)   
  G:C→A:T at CpG 31 28.7 
  G:C→A:T at non-CpG 19 17.6 
  A:T→G:C 5.6 
 Transversions (n = 21)   
  G:C→T:A 10 9.3 
  T:A→G:C 1.8 
  G:C→C:G 6.5 
  A:T→T:A 1.8 
 Subtotal 77 71.3 
Deletions and Insertions 31 28.7 
 Total 108 100 
Table 3

p53 mutations identified in 456 breast tumors of the CBCS

Tumor IDExonCodon(s)Nucleotide(s) alteredBase changeAmino acid changeDeleted or inserted sequencePredicted mutation
10 153 CCC→CTC C→T Pro→Leu  Missense 
12 266 1-bp deletion   Frameshift 
31 273 CGT→CAT G→Aa Arg→His  Missense 
47 193 CAT→CGT A→G His→Arg  Missense 
72 167 1-bp deletion   Frameshift 
81 114–118 14-bp deletion   TGCATTCTGGGACA Frameshift 
90 165 CAG→TAG C→T Gln→stop  Nonsense 
91 237 ATG→ATA G→A Met→Ile  Missense 
98 141 TGC→TAC G→A Cys→Tyr  Missense 
102 175 CGC→CAC G→Aa Arg→His  Missense 
112 248 CGG→CTG G→T Arg→Leu  Missense 
136 248 CGG→TGG C→Ta Arg→Trp  Missense 
148 306 CGA→TGA C→Ta Arg→stop  Nonsense 
154 238 TGT→TAT G→A Cys→Tyr  Missense 
162 282 CGG→TGG C→Ta Arg→Trp  Missense 
163 Intron 4  g→ab g→a   Splicing 
168 255–256 1-bp insertion   Frameshift 
174 248 CGG→CAG G→Aa Arg→Gln  Missense 
184 248 CGG→TGG C→Ta Arg→Trp  Missense 
189 157 4-bp insertion   GCGT Frameshift 
192 Intron 5  ?-bp deletionc   Unknownc Silent 
197 236 TAC→TGC A→G Tyr→Cys  Missense 
199 196 CGA→TGA C→Ta Arg→stop  Nonsense 
201 248 CGG→CAG G→Aa Arg→Gln  Missense 
204 196 CGA→TGA C→Ta Arg→stop  Nonsense 
206 196 CGA→TGA C→Ta Arg→stop  Nonsense 
209 135 TGC→TAC G→A Cys→Tyr  Missense 
210 273 CGT→CAT G→Aa Arg→His  Missense 
212 248 CGG→CTG G→T Arg→Leu  Missense 
215 273 CGT→TGT C→Ta Arg→Cys  Missense 
231 282 CGG→GGG C→G Arg→Gly  Missense 
234 237 ATG→ATT G→T Met→Ile  Missense 
237 Intron 7  g→ab g→a   Splicing 
244 173 GTG→ATG G→A Val→Met  Missense 
249 Intron 4/Exon 5 126 14-bp deletion   cttcctacagb/TACT Splicing 
251 306 CGA→TGA C→Ta Arg→stop  Nonsense 
254 298 GAG→TAG G→T Glu→stop  Nonsense 
258 281 GAC→GAG C→G Asp→Glu  Missense 
262 159 GCC→GTC C→T Ala→Val  Missense 
271 283 CGC→CCC G→C Arg→Pro  Missense 
273 234 TAC→TGC A→G Tyr→Cys  Missense 
275 175 CGC→CAC G→Aa Arg→His  Missense 
280 47 CCG→CTG C→Ta Pro→Leu  Missense 
282 240 7-bp insertion   GTGTAAC Frameshift 
284 149–153 13-bp deletion   CCACACCCCCGCC Frameshift 
286 80 1-bp deletion   Frameshift 
297 249 AGG→AGT G→T Arg→Ser  Missense 
300 244 GGC→GAC G→A Gly→Asp  Missense 
301 107–110 11-bp deletion   TACGGTTTCCG Frameshift 
303 246 ATG→AGG T→G Met→Arg  Missense 
320 175 CGC→CAC G→Aa Arg→His  Missense 
322 249 AGG→TGG A→T Arg→Trp  Missense 
338 227 2-bp deletion   CT Frameshift 
345 104 CAG→TAG C→T Gln→stop  Nonsense 
348 275 TGT→TTT G→T Cys→Phe  Missense 
352 Intron 4  g→ab g→a   Splicing 
359 216 2-bp insertion   GT Frameshift 
360 272 GTG→ATG G→A Val→Met  Missense 
371 211 2-bp deletion   AC Frameshift 
376 96 1-bp insertion   Frameshift 
379 226 GGC→GTC G→T Gly→Val  Missense 
391 175 CGC→CAC G→Aa Arg→His  Missense 
392 237 ATG→ATA G→A Met→Ile  Missense 
395 278 CCT→ACT C→A Pro→Thr  Missense 
399 68 1-bp deletion   G (1st position) Frameshift 
403 193 1-bp deletion   Frameshift 
410 306 CGA→TGA C→Ta Arg→stop  Nonsense 
416 68 1-bp deletion   G (1st position) Frameshift 
421 189–192 9-bp deletion   CCCCTCCTC In frame 
426 138 GCC→GTC C→T Ala→Val  Missense 
428 138 GCC→CCC G→C Ala→Pro  Missense 
432 273 CGT→TGT C→Ta Arg→Cys  Missense 
435 248 CGG→CAG G→Aa Arg→Gln  Missense 
438 Intron 4  ?-bp deletionc   Unknownc Silent 
441 236 TAC→TGC A→G Tyr→Cys  Missense 
443 248 CGG→CAG G→Aa Arg→Gln  Missense 
457 282 CGG→CCG G→C Arg→Pro  Missense 
466 286 GAA→AAA G→A Glu→Lys  Missense 
Tumor IDExonCodon(s)Nucleotide(s) alteredBase changeAmino acid changeDeleted or inserted sequencePredicted mutation
10 153 CCC→CTC C→T Pro→Leu  Missense 
12 266 1-bp deletion   Frameshift 
31 273 CGT→CAT G→Aa Arg→His  Missense 
47 193 CAT→CGT A→G His→Arg  Missense 
72 167 1-bp deletion   Frameshift 
81 114–118 14-bp deletion   TGCATTCTGGGACA Frameshift 
90 165 CAG→TAG C→T Gln→stop  Nonsense 
91 237 ATG→ATA G→A Met→Ile  Missense 
98 141 TGC→TAC G→A Cys→Tyr  Missense 
102 175 CGC→CAC G→Aa Arg→His  Missense 
112 248 CGG→CTG G→T Arg→Leu  Missense 
136 248 CGG→TGG C→Ta Arg→Trp  Missense 
148 306 CGA→TGA C→Ta Arg→stop  Nonsense 
154 238 TGT→TAT G→A Cys→Tyr  Missense 
162 282 CGG→TGG C→Ta Arg→Trp  Missense 
163 Intron 4  g→ab g→a   Splicing 
168 255–256 1-bp insertion   Frameshift 
174 248 CGG→CAG G→Aa Arg→Gln  Missense 
184 248 CGG→TGG C→Ta Arg→Trp  Missense 
189 157 4-bp insertion   GCGT Frameshift 
192 Intron 5  ?-bp deletionc   Unknownc Silent 
197 236 TAC→TGC A→G Tyr→Cys  Missense 
199 196 CGA→TGA C→Ta Arg→stop  Nonsense 
201 248 CGG→CAG G→Aa Arg→Gln  Missense 
204 196 CGA→TGA C→Ta Arg→stop  Nonsense 
206 196 CGA→TGA C→Ta Arg→stop  Nonsense 
209 135 TGC→TAC G→A Cys→Tyr  Missense 
210 273 CGT→CAT G→Aa Arg→His  Missense 
212 248 CGG→CTG G→T Arg→Leu  Missense 
215 273 CGT→TGT C→Ta Arg→Cys  Missense 
231 282 CGG→GGG C→G Arg→Gly  Missense 
234 237 ATG→ATT G→T Met→Ile  Missense 
237 Intron 7  g→ab g→a   Splicing 
244 173 GTG→ATG G→A Val→Met  Missense 
249 Intron 4/Exon 5 126 14-bp deletion   cttcctacagb/TACT Splicing 
251 306 CGA→TGA C→Ta Arg→stop  Nonsense 
254 298 GAG→TAG G→T Glu→stop  Nonsense 
258 281 GAC→GAG C→G Asp→Glu  Missense 
262 159 GCC→GTC C→T Ala→Val  Missense 
271 283 CGC→CCC G→C Arg→Pro  Missense 
273 234 TAC→TGC A→G Tyr→Cys  Missense 
275 175 CGC→CAC G→Aa Arg→His  Missense 
280 47 CCG→CTG C→Ta Pro→Leu  Missense 
282 240 7-bp insertion   GTGTAAC Frameshift 
284 149–153 13-bp deletion   CCACACCCCCGCC Frameshift 
286 80 1-bp deletion   Frameshift 
297 249 AGG→AGT G→T Arg→Ser  Missense 
300 244 GGC→GAC G→A Gly→Asp  Missense 
301 107–110 11-bp deletion   TACGGTTTCCG Frameshift 
303 246 ATG→AGG T→G Met→Arg  Missense 
320 175 CGC→CAC G→Aa Arg→His  Missense 
322 249 AGG→TGG A→T Arg→Trp  Missense 
338 227 2-bp deletion   CT Frameshift 
345 104 CAG→TAG C→T Gln→stop  Nonsense 
348 275 TGT→TTT G→T Cys→Phe  Missense 
352 Intron 4  g→ab g→a   Splicing 
359 216 2-bp insertion   GT Frameshift 
360 272 GTG→ATG G→A Val→Met  Missense 
371 211 2-bp deletion   AC Frameshift 
376 96 1-bp insertion   Frameshift 
379 226 GGC→GTC G→T Gly→Val  Missense 
391 175 CGC→CAC G→Aa Arg→His  Missense 
392 237 ATG→ATA G→A Met→Ile  Missense 
395 278 CCT→ACT C→A Pro→Thr  Missense 
399 68 1-bp deletion   G (1st position) Frameshift 
403 193 1-bp deletion   Frameshift 
410 306 CGA→TGA C→Ta Arg→stop  Nonsense 
416 68 1-bp deletion   G (1st position) Frameshift 
421 189–192 9-bp deletion   CCCCTCCTC In frame 
426 138 GCC→GTC C→T Ala→Val  Missense 
428 138 GCC→CCC G→C Ala→Pro  Missense 
432 273 CGT→TGT C→Ta Arg→Cys  Missense 
435 248 CGG→CAG G→Aa Arg→Gln  Missense 
438 Intron 4  ?-bp deletionc   Unknownc Silent 
441 236 TAC→TGC A→G Tyr→Cys  Missense 
443 248 CGG→CAG G→Aa Arg→Gln  Missense 
457 282 CGG→CCG G→C Arg→Pro  Missense 
466 286 GAA→AAA G→A Glu→Lys  Missense 
a

G:C→A:T transitions at CpG sites.

b

Lower case indicates intronic sequences.

c

Deleted sequence unknown.

Table 3A

Continued

4675151CCC→CACC→APro→HisMissense
483 273 CGT→CCT G→C Arg→Pro  Missense 
488 229 2-bp deletion   GT Frameshift 
498 Intron 3  c→tb c→t   Silent 
500 105–107 6-bp deletion   CAGCTA In frame 
503 196 CGA→TGA C→Ta Arg→stop  Nonsense 
506 271 GAG→CAG G→C Glu→Gln  Missense 
508 172 1-bp insertion   Frameshift 
510 248 CGG→CAG G→Aa Arg→Gln  Missense 
512 151 CCC→TCC C→T Pro→Ser  Missense 
514 135 TGC→GGC T→G Cys→Gly  Missense 
515 169 2-bp insertion   TC Frameshift 
520 248 CGG→CAG G→Aa Arg→Gln  Missense 
521 251 1-bp deletion   Frameshift 
527 220 TAT→CAT T→C Tyr→His  Missense 
533 273 CGT→CAT G→Aa Arg→His  Missense 
534 121–123 7-bp deletion   TGTGACT Frameshift 
535 101 1-bp deletion   Frameshift 
536 121 2-bp deletion   CT Frameshift 
558 194 1-bp deletion   Frameshift 
572 68 1-bp insertion   Frameshift 
573 245 GGC→AGC G→Aa Gly→Ser  Missense 
580 294 GAG→TAG G→T Glu→stop  Nonsense 
583 82 CCG→CCA G→Aa Pro→Pro  Silent 
589 179 CAT→CAA T→A His→Gln  Missense 
599 273 CGT→TGT C→Ta Arg→Cys  Missense 
605 282 CGG→TGG C→Ta Arg→Trp  Missense 
612 283 CGC→TGC C→Ta Arg→Cys  Missense 
625 193 CAT→CGT A→G His→Arg  Missense 
632 279–283 15-bp deletion   GGGAGAGACCGGCGC In frame 
4675151CCC→CACC→APro→HisMissense
483 273 CGT→CCT G→C Arg→Pro  Missense 
488 229 2-bp deletion   GT Frameshift 
498 Intron 3  c→tb c→t   Silent 
500 105–107 6-bp deletion   CAGCTA In frame 
503 196 CGA→TGA C→Ta Arg→stop  Nonsense 
506 271 GAG→CAG G→C Glu→Gln  Missense 
508 172 1-bp insertion   Frameshift 
510 248 CGG→CAG G→Aa Arg→Gln  Missense 
512 151 CCC→TCC C→T Pro→Ser  Missense 
514 135 TGC→GGC T→G Cys→Gly  Missense 
515 169 2-bp insertion   TC Frameshift 
520 248 CGG→CAG G→Aa Arg→Gln  Missense 
521 251 1-bp deletion   Frameshift 
527 220 TAT→CAT T→C Tyr→His  Missense 
533 273 CGT→CAT G→Aa Arg→His  Missense 
534 121–123 7-bp deletion   TGTGACT Frameshift 
535 101 1-bp deletion   Frameshift 
536 121 2-bp deletion   CT Frameshift 
558 194 1-bp deletion   Frameshift 
572 68 1-bp insertion   Frameshift 
573 245 GGC→AGC G→Aa Gly→Ser  Missense 
580 294 GAG→TAG G→T Glu→stop  Nonsense 
583 82 CCG→CCA G→Aa Pro→Pro  Silent 
589 179 CAT→CAA T→A His→Gln  Missense 
599 273 CGT→TGT C→Ta Arg→Cys  Missense 
605 282 CGG→TGG C→Ta Arg→Trp  Missense 
612 283 CGC→TGC C→Ta Arg→Cys  Missense 
625 193 CAT→CGT A→G His→Arg  Missense 
632 279–283 15-bp deletion   GGGAGAGACCGGCGC In frame 
a

G:C→A:T transitions at CpG sites.

b

Lower case indicates intronic sequences.

c

Deleted sequence unknown.

Table 4

Association of p53 mutation with clinical or tumor characteristics

Tumor CharacteristicAny mutationNo mutationORa95% CI
n%n%
Clinical stageb       
 Stage I 25 6.0 138 32.9 1.00  
 Stage II–IV 71 16.9 185 44.2 1.96 1.17–3.27 
Primary tumor size       
 ≤2 cm 36 8.3 195 44.8 1.00  
 >2 cm 60 13.8 144 33.1 2.01 1.25–3.23 
Node status       
 Negative 56 13.0 197 45.8 1.00  
 Positive 41 9.5 136 31.6 0.98 0.61–1.56 
Combined ER and PR status       
 ER+/PR+ 24 5.5 195 44.9 1.00  
 ER+/PR− 2.1 34 7.8 2.01 0.85–4.74 
 ER−/PR+ 1.8 24 5.5 2.51 1.01–6.26 
 ER−/PR− 57 13.1 83 19.1 5.12 2.95–8.91 
Mitotic indexc       
 ≤10 31 6.9 236 52.4 1.00  
 >10 72 16.0 111 24.7 4.71 2.88–7.72 
Histological grade       
 Well/moderately differentiated 22 4.9 137 30.3 1.00  
 Poorly differentiated 82 18.1 211 46.7 2.20 1.30–3.73 
Nuclear grade       
 Slight/moderate pleomorphism 35 7.7 241 53.2 1.00  
 Marked pleomorphism 69 15.2 108 23.8 4.15 2.57–6.68 
Combined tumor graded       
 I 0.9 118 26.2 1.00  
 II 28 6.2 116 25.8 7.04 2.39–20.72 
 III 71 15.8 113 25.1 17.90 6.25–51.30 
Tumor CharacteristicAny mutationNo mutationORa95% CI
n%n%
Clinical stageb       
 Stage I 25 6.0 138 32.9 1.00  
 Stage II–IV 71 16.9 185 44.2 1.96 1.17–3.27 
Primary tumor size       
 ≤2 cm 36 8.3 195 44.8 1.00  
 >2 cm 60 13.8 144 33.1 2.01 1.25–3.23 
Node status       
 Negative 56 13.0 197 45.8 1.00  
 Positive 41 9.5 136 31.6 0.98 0.61–1.56 
Combined ER and PR status       
 ER+/PR+ 24 5.5 195 44.9 1.00  
 ER+/PR− 2.1 34 7.8 2.01 0.85–4.74 
 ER−/PR+ 1.8 24 5.5 2.51 1.01–6.26 
 ER−/PR− 57 13.1 83 19.1 5.12 2.95–8.91 
Mitotic indexc       
 ≤10 31 6.9 236 52.4 1.00  
 >10 72 16.0 111 24.7 4.71 2.88–7.72 
Histological grade       
 Well/moderately differentiated 22 4.9 137 30.3 1.00  
 Poorly differentiated 82 18.1 211 46.7 2.20 1.30–3.73 
Nuclear grade       
 Slight/moderate pleomorphism 35 7.7 241 53.2 1.00  
 Marked pleomorphism 69 15.2 108 23.8 4.15 2.57–6.68 
Combined tumor graded       
 I 0.9 118 26.2 1.00  
 II 28 6.2 116 25.8 7.04 2.39–20.72 
 III 71 15.8 113 25.1 17.90 6.25–51.30 
a

Adjusted for age and race.

b

According to the AJCC breast tumor staging guidelines.

c

Per 10 high power fields.

d

Composite score based on mitotic index, histological grade, and nuclear grade.

Table 5

Association of p53 mutations in breast tumors with smoking

Mutation prevalenceOR
No. mutations/No. tumors%Unadjusted95% CIAdjusteda95% CI
Any p53 mutation       
 Smoking status       
  Never 54/229 23.6 1.00  1.00  
  Former 23/142 16.2 0.63 0.36–1.08 0.64 0.35–1.15 
  Current 31/85 36.5 1.86 1.09–3.18 2.11 1.17–3.78 
Transitions       
 Smoking status       
  Never 30/229 13.1 1.00  1.00  
  Former 9/142 6.3 0.44 0.20–0.96 0.45 0.20–1.06 
  Current 17/85 20.0 1.84 0.94–3.58 2.21 1.08–4.52 
Transversions       
 Smoking status       
  Never 7/229 3.1 1.00  1.00  
  Former 7/142 4.9 1.47 0.50–4.30 1.35 0.43–4.24 
  Current 7/85 8.2 3.24 1.09–9.65 3.37 1.03–11.06 
G:C→T:A transversions       
 Smoking status       
  Never 2/229 0.9 1.00  1.00  
  Former 3/142 2.1 2.21 0.36–13.40 2.43 0.37–15.73 
  Current 5/85 5.9 8.10 1.53–42.95 10.53 1.77–62.55 
Mutation prevalenceOR
No. mutations/No. tumors%Unadjusted95% CIAdjusteda95% CI
Any p53 mutation       
 Smoking status       
  Never 54/229 23.6 1.00  1.00  
  Former 23/142 16.2 0.63 0.36–1.08 0.64 0.35–1.15 
  Current 31/85 36.5 1.86 1.09–3.18 2.11 1.17–3.78 
Transitions       
 Smoking status       
  Never 30/229 13.1 1.00  1.00  
  Former 9/142 6.3 0.44 0.20–0.96 0.45 0.20–1.06 
  Current 17/85 20.0 1.84 0.94–3.58 2.21 1.08–4.52 
Transversions       
 Smoking status       
  Never 7/229 3.1 1.00  1.00  
  Former 7/142 4.9 1.47 0.50–4.30 1.35 0.43–4.24 
  Current 7/85 8.2 3.24 1.09–9.65 3.37 1.03–11.06 
G:C→T:A transversions       
 Smoking status       
  Never 2/229 0.9 1.00  1.00  
  Former 3/142 2.1 2.21 0.36–13.40 2.43 0.37–15.73 
  Current 5/85 5.9 8.10 1.53–42.95 10.53 1.77–62.55 
a

Adjusted for age, race, stage, tumor size, menopausal status, and family history of breast cancer in a first-degree relative.

We thank the staff and participants of the Carolina Breast Cancer Study for invaluable contributions to the study.

1
American Cancer Society. Cancer Facts and Figures American Cancer Society Atlanta, GA  
2000
.
2
Madigan M. P., Ziegler R. G., Benichou J., Byrne C., Hoover R. N. Proportion of breast cancer cases in the United States explained by well-established risk factors.
J. Natl. Cancer Inst. (Bethesda)
,
87
:
1681
-1685,  
1995
.
3
Ernster V. L. Female lung cancer.
Ann. Rev. Public Health
,
17
:
97
-114,  
1996
.
4
Choi S. Y., Kahyo H. Effect of cigarette smoking and alcohol consumption in the aetiology of cancer of the oral cavity and oropharynx among U. S. veterans.
Int. J. Epidemiol.
,
20
:
878
-885,  
1991
.
5
Boffetta P., Mashberg A., Winkelman R., Garfinkel L. Carcinogenic effect of tobacco smoking and alcohol drinking on anatomic sites of the oral cavity and oropharynx.
Int. J. Cancer
,
52
:
530
-533,  
1992
.
6
Ross R. K., Paganini-Hill A., Henderson B. E. Epidemiology of bladder cancer Skinner D. G. Lieskovsky G. eds. .
Diagnosis and Management of Genitourinary Cancer
,
:
23
-31, W. B. Saunders Co. Philadelphia  
1988
.
7
Ryberg D., Hewer A., Phillips D. H., Haugen A. Different susceptibility to smoking-induced DNA damage among male and female lung cancer patients.
Cancer Res.
,
54
:
5801
-5803,  
1994
.
8
Kure E. H., Ryberg D., Hewer A., Phillips D. H., Skaug V., Baera R., Haugen A. p53 mutations in lung tumours: relationship to gender and lung DNA adduct levels.
Carcinogenesis (Lond.)
,
17
:
2201
-2205,  
1996
.
9
Castelao J. E., Yuan J-M., Skipper P. L., Tannenbaum S. R., Gago-Dominguez M., Crowder J. S., Ross R. K., Yu M. C. Gender- and smoking-related bladder cancer risk.
J. Natl. Cancer Inst. (Bethesda)
,
93
:
538
-545,  
2001
.
10
Harris R. E., Zang E. A., Anderson J. I., Wynder E. L. Race and sex differences in lung cancer risk associated with cigarette smoking.
Int. J. Epidemiol.
,
22
:
592
-599,  
1993
.
11
Risch H. A., Howe G. R., Jain M., Burch J. D., Holowaty E. J., Miller A. B. Are female smokers at higher risk for lung cancer than male smokers? Am.
J. Epidemiol.
,
138
:
281
-293,  
1993
.
12
Zang E. A., Wynder E. L. Differences in lung cancer risk between men and women: examination of the evidence.
J. Natl. Cancer Inst. (Bethesda)
,
88
:
183
-192,  
1996
.
13
Chu S. Y., Stroup N. E., Wingo P. A., Lee N. C., Peterson H. B., Gwinn M. L. Cigarette smoking and the risk of breast cancer.
Am. J. Epidemiol.
,
131
:
244
-253,  
1990
.
14
Schechter M. T., Miller A. B., Howe G. R. Cigarette smoking and breast cancer: a case-control study of screening program participants.
Am. J. Epidemiol.
,
121
:
479
-487,  
1985
.
15
Meara J., McPherson K., Roberts M., Jones L., Vessey M. Alcohol, cigarette smoking, and breast cancer.
Br. J. Cancer
,
60
:
70
-73,  
1989
.
16
Rohan T. E., Baron J. A. Cigarette smoking and breast cancer.
Am. J. Epidemiol.
,
129
:
36
-42,  
1989
.
17
Bennicke K., Conrad C., Sabroe S., Sorensen H. T. Cigarette smoking and breast cancer.
Br. Med. J.
,
310
:
1431
-1433,  
1995
.
18
Hiatt R. A., Fireman B. H. Smoking, menopause, and breast cancer.
J. Natl. Cancer Inst. (Bethesda)
,
76
:
833
-838,  
1986
.
19
Millikan R. C., Pittman G. S., Newman B., Tse C. K., Selmin O., Rockhill B., Savitz D., Moorman P. G., Bell D. A. Cigarette smoking, N-acetyltransferases 1 and 2, and breast cancer risk.
Cancer Epidemiol. Biomark. Prev.
,
7
:
371
-378,  
1998
.
20
Baron J. A., Newcomb P. A., Longnecker M. P., Mittendorf R., Storer B. E., Clapp R. W., Bogdan G., Yuen J. Cigarette smoking and breast cancer.
Cancer Epidemiol. Biomark. Prev.
,
5
:
399
-403,  
1996
.
21
Ambrosone C. B., Freudenheim J. L., Graham S., Marshall J. R., Vena J. E., Brasure J. R. Cigarette smoking, N-acetyltransferase 2 genetic polymorphisms, and breast cancer risk.
JAMA
,
276
:
1494
-1501,  
1996
.
22
Morabia A., Bernstein M., Heritier S., Khatchatrian N. Relation of breast cancer with passive and active exposure to tobacco smoke.
Am. J. Epidemiol.
,
143
:
918
-928,  
1996
.
23
Couch F. J., Cerhan J. R., Vierkant R. A., Grabrick D. M., Therneau T. M., Pankratz V. S., Hartmann L. C., Olson J. E., Vachon C. M., Sellers T. A. Cigarette smoking increases risk for breast cancer in high-risk breast cancer families.
Cancer Epidemiol. Biomark. Prev.
,
10
:
327
-332,  
2001
.
24
Lash T. L., Aschengrau A. Active and passive smoking and the occurrence of breast cancer.
Am. J. Epidemiol.
,
149
:
5
-12,  
1999
.
25
Palmer J. R., Rosenberg L., Clark E. A., Stolley P. D., Warshauer M. E., Zauber A. G., Shapiro S. Breast cancer and cigarette smoking: a hypothesis.
Am. J. Epidemiol.
,
134
:
1
-13,  
1991
.
26
Wells A. J. Breast cancer, cigarette smoking, and passive smoking.
Am. J. Epidemiol.
,
133
:
208
-210,  
1991
.
27
Palmer J. R., Rosenberg L. Cigarette smoking and the risk of breast cancer.
Epidemiol. Rev.
,
15
:
145
-156,  
1993
.
28
Adami H. O., Lund E., Bergstrom R., Meirik O. Cigarette smoking, alcohol consumption and risk of breast cancer in young women.
Br. J. Cancer
,
58
:
832
-837,  
1988
.
29
Braga C., Negri E., La Vecchia C., Filiberti R., Francheschi S. Cigarette smoking and the risk of breast cancer.
Eur. J. Cancer Prev.
,
5
:
159
-164,  
1996
.
30
Norlund L. A., Carstensen J. M., Pershagen G. Cancer incidence in female smokers: a 26-year follow-up.
Int. J. Cancer
,
73
:
625
-628,  
1997
.
31
London S. J., Colditz G. A., Stampfer M. J., Willett W. C., Rosner B. A., Speizer F. E. Prospective study of smoking and the risk of breast cancer.
N. Engl. J. Med.
,
81
:
1625
-1631,  
1989
.
32
Smith S. J., Deacon J. M., Chilvers C. E. D., members of the United Kingdom National Case-Control Study Group. Alcohol, smoking, passive smoking, and caffeine in relation to breast cancer risk in young women.
Br. J. Cancer
,
70
:
112
-119,  
1994
.
33
O’Connell D. L., Hulka B. S., Chambless L. E., Wlkinson W. E., Deubner D. C. Cigarette smoking, alcohol consumption, and breast cancer risk.
J. Natl. Cancer Inst. (Bethesda)
,
78
:
229
-234,  
1987
.
34
Ghadirian P., Lacroix A., Perret C., Maisonneuve P., Boyle P. Socioeconomic characteristics, smoking, medical and family history, and breast cancer.
Cancer Detect. Prev.
,
22
:
485
-494,  
1998
.
35
Gammon M. D., Schoenberg J. B., Teitelbaum S. L., Brinton L. A., Potischman N., Swanson C. A., Brogan D. J., Coates R. J., Malone K. E., Stanford J. L. Cigarette smoking and breast cancer risk among young women (United States).
Cancer Causes Control
,
9
:
583
-590,  
1998
.
36
Ranocchia D., Minelli L., Modolo M. A. Cigarette smoke and the hormonal receptor status in breast cancer.
Eur. J. Epidemiol.
,
7
:
389
-395,  
1991
.
37
Brunet J. S., Ghadirian P., Rebbeck T. R., Lerman C., Garber J. E., Tonin P. N., Abrahamson J., Foulkes W. D., Daly M., Wagner-Costalas J., Godwin A., Olopade O. I., Moslehi R., Liede A., Futreal P. A., Weber B. L., Lenoir G. M., Lynch H. T., Narod S. A. Effect of smoking on breast cancer in carriers of mutant BRCA1 or BRCA2 genes.
J. Natl. Cancer Inst. (Bethesda)
,
90
:
761
-766,  
1998
.
38
Michnovicz J. J., Hershcopf R. J., Naganuma H., Bradlow H. L., Fishman J. Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking.
N. Engl. J. Med.
,
315
:
1305
-1309,  
1986
.
39
MacMahon B., Trichopoulos D., Cole P., Brown J. Cigarette smoking and urinary estrogens.
N. Engl. J. Med.
,
307
:
1062
-1065,  
1982
.
40
Zhang Y., Kiel D. P., Kreger B. E., Cupples L. A., Ellison R. C., Dorgan J. F., Schatzkin A., Levy D., Felsen D. T. Bone mass and the risk of breast cancer among postmenopausal women.
N. Engl. J. Med.
,
336
:
611
-617,  
1997
.
41
Baron J. A., Vecchia C., Levi F. The antiestrogenic effect of cigarette smoking in women.
Am. J. Obstet. Gynecol.
,
162
:
502
-514,  
1990
.
42
Jick H., Porter J. B., Morrison A. S. Relation between smoking and age of natural menopause.
Lancet
,
1
:
1354
-1355,  
1977
.
43
Yu G. P., Ostroff J. S., Zhang Z. F., Tang J., Schantz S. P. Smoking history and cancer patient survival: a hospital cancer registry study.
Cancer Detect. Prev.
,
21
:
497
-509,  
1997
.
44
Calle E. E., Miracle-McMahill H. L., Thun M. J., Heath C. W., Jr. Cigarette smoking and risk of fatal breast cancer.
Am. J. Epidemiol.
,
139
:
1001
-1007,  
1994
.
45
DeMarini D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate.
Mutat. Res.
,
114
:
59
-89,  
1983
.
46
Hecht S. S., Carmella S. G., Murphy S. E., Foiles P. G., Chung F. L. Carcinogen biomarkers related to smoking and upper aerodigestive tract cancer.
J. Cell Biochem. Suppl.
,
17F
:
27
-35,  
1993
.
47
Hecht S. S. Tobacco smoke carcinogens and lung cancer.
J. Natl. Cancer Inst. (Bethesda)
,
91
:
1194
-1210,  
1999
.
48
Anderson K. E., Carmella S. G., Ye M., Bliss R. L., Le C., Murphy L., Hecht S. S. Metabolites of a tobacco-specific lung carcinogen in nonsmoking women exposed to environmental tobacco smoke.
J. Natl. Acad. Sci. USA
,
93
:
378
-381,  
2001
.
49
Obana H., Hori S., Kashmoto L., Kunita N. Polycyclic aromatic hydrocarbons in human fat and liver.
Bull. Environ. Contam. Toxicol.
,
27
:
23
-27,  
1981
.
50
MacNicoll A. D., Easty G. C., Neville A. M., Grover P. L., Sims P. Metabolism and activation of carcinogenic polycyclic hydrocarbons by human mammary cells.
Biochem. Biophys. Res. Commun.
,
95
:
1599
-1606,  
1980
.
51
El-Bayoumy K. Environmental carcinogens that may be involved in human breast cancer etiology.
Chem. Res. Toxicol.
,
5
:
585
-590,  
1992
.
52
Martin F. L., Venitt S., Carmichael P. L., Crofton-Sleigh C., Stone E. M., Cole K. J., Gusterson B. A., Grover P. L., Phillips D. H. DNA damage in breast epithelial cells: detection by the single-cell gel (comet) assay and induction by human mammary lipid extracts.
Carcinogenesis (Lond.)
,
18
:
2299
-2305,  
1997
.
53
Petrakis N. L., Maack C. A., Lee R. E., Lyon M. Mutagenic activity in nipple aspirates of human breast fluid.
Cancer Res.
,
40
:
188
-189,  
1980
.
54
Li D., Wang M., Dhingra K., Hittelman W. N. Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology.
Cancer Res.
,
56
:
287
-293,  
1996
.
55
Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis.
Cancer Res.
,
54
:
4855
-4878,  
1994
.
56
Biggs P. J., Warren W., Venitt S., Stratton M. R. Does a genotoxic carcinogen contribute to human breast cancer? The value of mutational spectra in unraveling the aetiology of cancer.
Mutagenesis
,
8
:
275
-283,  
1993
.
57
Goldman R., Shields P. G. Molecular epidemiology of breast cancer.
In Vivo
,
12
:
43
-48,  
1998
.
58
Elledge R. M., Fuqua S. A., Clark G. M., Pujol P., Allred D. C., McGuire W. L. Prognostic significance of p53 gene alterations in node-negative breast cancer.
Breast Cancer Res. Treat.
,
26
:
225
-235,  
1993
.
59
Pharoah P. D. P., Day N. E., Caldas C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis.
Br. J. Cancer
,
80
:
1968
-1973,  
1999
.
60
Powell B., Soong R., Iacopetta B., Seshadri R., Smith D. R. Prognostic significance of mutations to different structural and functional regions of the p53 gene in breast cancer.
Clin. Cancer Res.
,
6
:
443
-451,  
2000
.
61
Falette N., Paperin M-P., Treilleux I., Gratadour A-C., Peloux N., Mignotte H., Tooke N., Lofman E., Inganas M., Bremond A., Ozturk M., Puisieux A. Prognostic value of p53 gene mutations in a large series of node-negative breast cancer patients.
Cancer Res.
,
58
:
1451
-1455,  
1998
.
62
Bergh J., Norberg T., Sjogren S., Lindgren A., Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy.
Nat. Med.
,
1
:
1029
-1034,  
1995
.
63
Iacopetta B., Grieu F., Powell B., Soong R., McCaul K., Seshadri R. Analysis of p53 gene mutation by polymerase chain reaction-single strand conformation polymorphism provides independent prognostic information in node-negative breast cancer.
Clin. Cancer Res.
,
4
:
1597
-1602,  
1998
.
64
Sjogren S., Inganas M., Norberg T., Lindgren A., Nordgren H., Holmberg L., Bergh J. The p53 gene in breast cancer: prognostic value of complementary DNA sequencing versus immunohistochemistry.
J. Natl. Cancer Inst. (Bethesda)
,
88
:
173
-182,  
1996
.
65
Takahashi M., Tonoki H., Tada M., Kashiwazaki H., Furuuchi K., Hamada J. Fujioka, Y. Sato Y., Takahashi H., Todo S., Sakuragi N., Moriuchi T. Distinct prognostic values of p53 mutations and loss of estrogen receptor and their cumulative effect in primary breast cancers.
Int. J. Cancer (Bethesda)
,
89
:
92
-99,  
2000
.
66
Levine A. J. P53, the cellular gatekeeper for growth and division.
Cell
,
88
:
323
-333,  
1997
.
67
Hernandez-Boussard T. M., Hainaut P. A specific spectrum of p53 mutations in lung cancer from smokers: review of mutations compiled in the IARC p53 database.
Environ. Health Perspect.
,
106
:
385
-391,  
1998
.
68
Newman B., Moorman P., Millikan R., Qaqish B., Geradts J., Aldrich T., Liu E. T. The Carolina Breast Cancer Study: integrating population-based epidemiology and molecular biology.
Breast Cancer Res. Treat.
,
34
:
51
-60,  
1995
.
69
Moorman P. G., Newman B., Millikan R. C., Tse C-K. J., Sandler D. P. Participation rates in a case-control study: the impact of age, race, and race of interviewer.
Ann. Epidemiol.
,
9
:
188
-195,  
1999
.
70
Dressler L. G., Geradts J., Burroughs M., Cowan D., Millikan R. C., Newman B. Policy guidelines for the utilization of formalin-fixed, paraffin-embedded tissue sections: the UNC SPORE experience.
Breast Cancer Res. Treat.
,
58
:
31
-39,  
1999
.
71
Li Y., Millikan R. C., Carozza S., Newman B., Liu E., Davis R., Miike R., Wrensch M. P53 mutations in malignant gliomas.
Cancer Epidemiol. Biomark. Prev.
,
7
:
303
-308,  
1998
.
72
Olshan A. F., Weissler M. C., Pei H., Conway K., Anderson S., Fried D. B., Yarborough W. G. Alterations of the p16 gene in head and neck cancer: frequency and association with p53, Prad-1 and HPV.
Oncogene
,
14
:
811
-818,  
1997
.
73
Williams C., Ponten F., Moberg C., Soderkvist P., Uhlen M., Ponten J., Sitbon G., Lundeberg J. A high frequency of sequence alterations is due to formalin fixation of archival specimens.
Am. J. Pathol.
,
155
:
1467
-1471,  
1999
.
74
Brennan J. A., Boyle J. O., Koch W. M., Godman S. N., Hruban R. H., Eby Y. J., Couch M. J., Forastiere A. A., Sidransky D. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck.
N. Engl. J. Med.
,
332
:
712
-717,  
1995
.
75
Kondo K., Tsuzuki H., Sasa M., Sumitomo M., Uyama T., Monden Y. A dose-response relationship between the frequency of p53 mutations and tobacco consumption in lung cancer patients.
J. Surg. Oncol.
,
61
:
20
-26,  
1996
.
76
Husgafvel-Pursiainen K., Kannio A. Cigarette smoking and p53 mutations in lung cancer and bladder cancer.
Environ. Health Perspect.
,
104
:
553
-556,  
1996
.
77
Bennett W. P., Hussain S. P., Vahakangas K. H., Khan M. A., Shields P. G., Harris C. C. Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer.
J. Pathol.
,
187
:
8
-18,  
1999
.
78
Ahrendt S. A., Chow J. T., Yang S. C., Wu L., Zhang M-J., Jen J., Sidransky D. Alcohol consumption and cigarette smoking increase the frequency of p53 mutations in non-small cell lung cancer.
Cancer Res.
,
60
:
3155
-3159,  
2000
.
79
Marchetti A., Pellegrini S., Sozzi G., Bertacca G., Gaeta P., Buttitta F., Carnicelli V., Griseri P., Chella A., Angeletti C. A., Pierotti M., Bevilacqua G. Genetic analysis of lung tumours of non-smoking subjects: p53 gene mutations are constantly associated with loss of heterozygosity at the FHIT locus.
Br. J. Cancer
,
78
:
73
-78,  
1998
.
80
Denissenko M. F., Pao A., Tang M., Pfeifer G. P. Preferential formation of benzo(a)pyrene adducts at lung cancer mutational hotspots in p53.
Science (Wash. DC)
,
274
:
430
-432,  
1996
.
81
Takahashi T., Takahashi T., Suzuki H., Hida T., Sekido Y., Ariyoshi Y., Ueda R. The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern.
Oncogene
,
6
:
1775
-1778,  
1991
.
82
Kannio A., Ridanpaa M., Koskinen H., Partanen T., Anttila S., Collan Y., Hietanen E., Vainio H., Husgafvel-Pursiainen K. A molecular and epidemiological study on bladder cancer: p53 mutations, tobacco smoking, and occupational exposure to asbestos.
Cancer Epidemiol. Biomark. Prev.
,
5
:
33
-39,  
1996
.
83
Gammon M. D., Hibshoosh H., Terry M. B., Bose S., Schoenberg J. B., Brinton L. A., Bernstein J. L., Thompson W. D. Cigarette smoking and other risk factors in relation to p53 expression in breast cancer among young women.
Cancer Epidemiol. Biomark. Prev.
,
8
:
255
-263,  
1999
.
84
Wei Q., Cheng L., Amos C. I., Wang L-E., Guo Z., Hong W. K., Spitz M. R. Repair of tobacco carcinogen-induced DNA adducts and lung cancer risk: a molecular epidemiologic study.
J. Natl. Cancer Inst. (Bethesda)
,
92
:
1764
-1772,  
2000
.
85
Wynder E. L., Hoffmann D. A study of tobacco carcinogenesis. X. Tumor promoting activity.
Cancer (Phila.)
,
24
:
289
-301,  
1969
.
86
International Agency for Research on Cancer. Tobacco smoking In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, VOL. 38, pp 127–198. Lyon, France: IARC, 1986.
87
Van Duuren B. L., Goldschmidt B. M. Cocarcinogenic and tumor-promoting agents in tobacco carcinogenesis.
J. Natl. Cancer Inst. (Bethesda)
,
56
:
1237
-1242,  
1976
.
88
Yu C-L., Driggers P., Barrera-Hernandez G., Nunez S. B., Segars J. H., Cheng S. The tumor suppressor p53 is a negative regulator of estrogen receptor signaling pathways.
Biochem. Biophys. Res. Commun.
,
239
:
617
-620,  
1997
.
89
Liu G., Schwartz J. A., Brooks S. C. p53 down-regulates ER-responsive genes by interfering with the binding of ER to ERE.
Biochem. Biophys. Res. Commun.
,
264
:
359
-364,  
1999
.
90
Liu G., Schwartz J. A., Brooks S. C. Estrogen receptor protects p53 from deactivation by human double minute-2.
Cancer Res.
,
60
:
1810
-1814,  
2000
.
91
Molinari A. M., Bontempo P., Schiavone E. M., Tortora V., Verdicchio A., Napolitano M., Nola E., Moncharmont B., Medici N., Nigro V., Armetta I., Abbondanza C., Puca G. A. Estradiol induces functional inactivation of p53 by intracellular redistribution.
Cancer Res.
,
60
:
2594
-2597,  
2000
.
92
Kuperwasser C., Pinkas J., Hurlbut G. D., Naber S. P., Jerry D. J. Cytoplasmic sequestration and functional repression of p53 in the mammary epithelium is reversed by hormonal treatment.
Cancer Res.
,
60
:
2723
-2729,  
2000
.
93
Klinge C. M., Kaur K., Swanson H. I. The aryl hydrocarbon receptor interacts with estrogen receptor alpha and orphan receptors COUP-TFI and ERRα1.
Arch. Biochem. Biophys.
,
373
:
163
-174,  
2000
.
94
Meek M. D., Finch G. L. Diluted mainstream cigarette smoke condensates activate estrogen receptor and aryl hydrocarbon receptor-mediated gene transcription.
Environ. Res. Section A
,
80
:
9
-17,  
1999
.
95
Nguyen T. A., Hoivik D., Lee J-E., Safe S. Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex.
Arch. Biochem. Biophys.
,
367
:
250
-257,  
1999
.
96
Caleffi M., Teague M. W., Jensen R. A., Vnencak-Jones C. L., Dupont W. D., Parl F. F. p53 gene mutations and steroid receptor status in breast cancer.
Cancer (Phila.)
,
8
:
2147
-2156,  
1994
.
97
Andersen T. I., Holm R., Nesland J. M., Heimdal K. R., Ottestad L., Borresen A-L. Prognostic significance of TP53 alterations in breast carcinoma.
Br. J. Cancer
,
68
:
540
-548,  
1993
.
98
Berns E. M., Foekens J. A., Vossen R., Look M. P., Devilee P., Henzen-Logmans S. C., van Staveren I. L., van Putten W. L., Inganas M., Meijer-van Gelder M. E., Cornelisse C., Claassen C. J., Portengen H., Bakker B., Klijn J. G. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer.
Cancer Res.
,
60
:
2155
-2162,  
2000
.
99
Seshadri R., Leong A. S., McCaul K., Figaira F. A., Setlur V., Horsfall D. J. Relationship between p53 gene abnormalities and other tumour characteristics in breast-cancer prognosis.
Int. J. Cancer
,
69
:
135
-141,  
1996
.