Colorectal adenomas can be morphologically classified as exophytic or flat. Polypoid cancers and cancers arising de novo (i.e., without any adenomatous component) might be the results of genetic progression from exophytic and flat adenomas, respectively. In this study, we examined 94 morphologically distinct neoplastic specimens for mutations in K-RAS and analyzed 10 microsatellite loci tightly linked to the tumor suppressor genes APC, p53, DCC/SMAD4, hMSH2, and hMLH1. K-RAS mutations were significantly associated with exophytic adenomas [11 of 21 (52%)] compared to flat adenomas [2 of 13 (15%), P < 0.03] and polypoid cancers [17 of 25 (68%)] compared to cancers arising de novo [7 of 25 (28%), P < 0.01]. Two polypoid cancer cases demonstrated three and four different K-RAS mutations, respectively, suggesting multiple areas of clonal expansion. Cancers arising de novo were significantly associated with loss of heterozygosity (LOH) at chromosome 3p compared to polypoid cancers [6 of 18 (33%) versus 1 of 20 (5%), P < 0.03], whereas the prevalence of LOH at chromosomes 2p, 5q, 17p, and 18q and microsatellite instability were not different between the groups. For all cancers, LOH at chromosomes 17p and 18q occurred in 47 and 51%, respectively. However, LOH at 17p and 18q occurred in 0 and 16% of benign lesions, respectively, suggesting their role in malignant transformation. There was no difference in LOH at chromosomes 17p and 18q between exophytic and flat lesions. These findings suggest that (a) mutant K-RAS is associated with the exophytic growth of colonic neoplasms, and that (b) some colorectal cancers arising de novo lose chromosome 3p during their evolution, which is not seen in polypoid cancers. Half of all cancers lose chromosomes 17p and 18q at or near the malignant transition of benign lesions as reported previously, irrespective of morphology. There may be more than one genetic avenue for colorectal cancer formation, and this correlates with the morphological characteristics.

Colorectal cancer requires genomic instability for its development. More than four-fifths of colorectal cancer evolve as a consequence of chromosomal instability, a poorly understood form of genomic instability originally proposed by Fearon and Vogelstein (1) that results in chromosomal aberrations and loss and gain of genetic material. A progression of loss of wild-type tumor suppressor genes has been consistently identified in colorectal cancer, involving the APC gene (chromosome 5q), a chromosome 18q allele at or near the DCC/SMAD4 locus, and the p53 gene (chromosome 17p) (2, 3). Additionally, mutational activation of K-RAS has been found in >50% of adenomas and colorectal cancers (2, 4, 5). These accumulated genetic changes permit escape from the growth restraints of tumor suppressors, and accelerate growth (6). A second form of genomic instability that is operative in hereditary nonpolyposis colorectal cancer and one-fifth of all sporadic cancers involves inactivation of the DNA mismatch repair (MMR)3 system (7). Among sporadic colorectal cancers with microsatellite instability (MSI), a phenotypic marker for inactivation of DNA MMR, the predominant alteration is the epigenetic inactivation of the DNA MMR gene hMLH1 (chromosome 3p) by promoter hypermethylation (8, 9). Among hereditary nonpolyposis colorectal cancer patients, germ-line mutation of the DNA MMR genes hMSH2 (chromosome 2p) and hMLH1 are most commonly detected (7). Unlike tumors with chromosomal instability, microsatellite-unstable tumors have rare loss and gain of genetic material. Instead, bi-allelic mutational inactivation occurs within exons of genes that have a microsatellite sequence present (10, 11, 12). The complement of tumor suppressor genes inactivated in tumors with MSI is different when compared to tumors with chromosomal instability, but overlapping pathways that are affected in both forms of genomic instability might be present.

It is not clear how these two different pathways of tumor development translate into the morphological heterogeneity observed among the pathological lesions in the colon. Most small polyps in the colon are adenomas, and the likelihood of finding cancer increases with the size of the neoplasm (13, 14, 15). It is currently thought that most colorectal cancers arise from preexisting adenomas, although some small proportion may emerge de novo, i.e., in the absence of identifiable preexisting adenoma (16, 17, 18, 19, 20, 21, 22). It is now recognized that some adenomas are not exophytic and are indeed flat, with the height of the adenoma not greater than twice the thickness of the adjacent normal mucosa (23, 24, 25, 26, 27, 28). Similarly, colorectal carcinomas may be morphologically classified either as polypoid or flat. Most of the polypoid cancers have adenomatous elements on the periphery when found at an early stage, leading to the suggestion that these have arisen from preexisting adenomas. It has been suggested that the less common flat-type cancers correspond to de novo tumors, which contain no observable adenomatous component (23, 24, 25, 26, 27, 28). Flat colorectal lesions are more difficult to identify by the usual diagnostic techniques (29), and if these develop through distinct genetic pathways, it might be of importance as genetic diagnostic approaches are developed to screen for colorectal neoplasia.

In this study, we originally hypothesized that flat and exophytic adenomas might be the precursor lesions to cancer arising de novo and polypoid cancers, respectively. To test this hypothesis, we examined the genetic makeup of these tumors in the context of the two understood pathways for colorectal cancer development.

Specimens.

A total of 94 sporadic colorectal tumors, including 34 neoplastic polyps and 60 cancers, were investigated. The 34 neoplastic polyps (including 15 small exophytic adenomas, 6 large exophytic adenomas, and 13 small flat adenomas) were collected from the Karolinska Hospital (Stockholm, Sweden). The size of small adenomas was ≤10 mm in diameter. Flat adenomas spread superficially, and the height of a flat adenoma is not greater than twice the thickness of the adjacent normal mucosa. Twenty-five early flat-type cancers arising de novo, namely, cancer without adenomatous components, were collected from the University of Tsukuba (Tsukuba City, Japan). An additional 25 early polypoid-type cancers with adenoma and 10 advanced cancers were used for comparison from tissue archives in the laboratory. “Early cancer” indicates cancer invasion limited to the submucosa, and “advanced cancer” indicates cancer invasion into the muscularis propria or serosa. “Flat-type cancer” indicates cancer in which lesions were flat against the surrounding mucosa or minimally elevated with a depression. The protruding lesions (sessile, semipedunculated, or pedunculated) were classified as “polypoid-type carcinoma.” The histopathological diagnosis was determined with reference to the WHO classification (30). All dysplastic specimens were excised endoscopically. The cancers were obtained either surgically or endoscopically.

DNA Extraction.

DNA was extracted from formalin-fixed, paraffin-embedded tissues sections. One section was stained with H&E. This reference slide was used to select areas for microdissection using a sterile scalpel blade under a dissecting microscope. Genomic DNA was isolated from the paraffin-embedded microdomains removed from the slides as previously described (3, 31). Normal tissue was obtained from histologically normal mucosa and/or normal lymph nodes.

K-RAS Mutation Analysis.

The DNA was amplified by a heminested PCR protocol. PCR amplification of exon 1 of a K-RAS containing codons 12 and 13 was first performed by the following primers: forward 5′-CGTCCACAAAATGATTCTGAATTAGCTGTATC-3′ and reverse 5′-CCTTATGTGTGACATGTTCTAATATAGTCAC-3′. Thirty-five cycles (92°C for 30 s and 67°C for 30 s) were performed, followed by a 10-min extension at 72°C. Initial PCR products were diluted and further amplified with a new forward primer, 5′-AGGCCTGCTGAAAATGAC-3′, and the same reverse primer described above. Thirty-five cycles (92°C for 25 s, 55°C 25 s, and 72°C for 25 s) were performed followed by a 10-min extension at 72°C. The 104-bp amplicons were then dot blotted onto nylon filters (Hybond-N; Amersham, Buchinghamshire, United Kingdom) and hybridized with radiolabeled oligomer primers representing all possible mutations at codon 12 and the GAC mutation of codon 13. Plaque hybridization and direct sequencing were performed to confirm the presence of K-RAS mutations at codons 12 and 13 that were detected by dot blot hybridization. Briefly, PCR products containing K-RAS mutations were cloned into a plasmid vector, pUC18. After amplification, the plasmid was plated and lifted on nylon filters. The plaque lifts were hybridized with the oligomer probes as described above. The subcloned plasmid was then analyzed by direct sequencing.

PCR-LOH Assay.

Ten sets of polymorphic microsatellite sequences that are tightly linked to known tumor suppressor genes and DNA MMR genes were used. DNA was amplified by PCR using 32P-end-labeled primers at microsatellite loci linked to the hMSH2 locus on 2p16 (CA-5 and D2S123) (32, 33), hMLH1 locus on 3p23-21.3 (D3S1611 and D3S1561) (34), APC/MCC locus on 5q21 (D5S107 and D5S346) (3, 35), p53 locus on 17p13 (D17S513 and p53 intron 1) (36, 37), and DCC/SMAD4 locus on 18q21.3 (D18S35A and 18qDCC-TA) (31, 38). PCR was carried out in a total volume of 5 μl containing 1× PCR buffer (Life Technologies, Inc., Gaithersburg, MD), 0.125 pmol of a labeled primer, 0.125 pmol of the other (nonlabeled) primer, 3 μl of template DNA, 0.25 units of Taq DNA polymerase (Life Technologies, Inc.), and 200 μm of each deoxynucleotide (Life Technologies, Inc.). Thirty-four cycles of 93°C for 1 min, 55°C for 2 min, and 72°C for 2 min were performed with an initial denaturation step of 94°C for 2 min, and a final extension step of 72°C for 10 min. The PCR products were analyzed on an 8% polyacrylamide gel containing 7.5 M urea and 0.5× Tris-borate-EDTA buffer. The PCR was repeated more than twice to ensure that the results were reproducible in each case. Assessment of LOH was assigned when a tumor allele showed at least a 50% reduction in the relative intensity of one allele in neoplastic tissue compared with the matched normal DNA.

Identification of MSI.

We used the stringent criteria for determination of MSI from a National Cancer Institute Workshop (39). MSI-H was defined by a novel bandshift or allele at ≥30% of microsatellite loci tested when compared to non-neoplastic tissue from the same patient. Our assay to determine MSI was based on PCR amplification of a panel of 10 microsatellite primer pairs linked to tumor suppressor genes listed above. Samples positive for MSI were not included as informative at that locus in the LOH analyses.

Statistical Analysis.

Statistical analysis was performed using the χ2 test, Fisher’s exact test, or Student’s t test. A P < 0.05 was considered to be statistically significant.

K-RAS Mutations.

The DNA encompassing codons 12 and 13 of the K-RAS proto-oncogene was successfully amplified from all microdissected tissue. Forty-five of 94 (48%) colorectal neoplasms had mutations of K-RAS at codon 12 and/or codon 13 (Tables 1 and 2). The mutations were found in 38% (13 of 34) of adenomas and 53% (32 of 60) of cancers (Table 3). No significant difference was found in the K-RAS mutation frequency between polyps and cancers. On the other hand, only 15% (2 of 13) of flat adenomas had K-RAS mutations, whereas 52% (11 of 21) of exophytic adenomas had the mutations (P < 0.03, Fisher’s exact test). Interestingly, bi-allelic mutations of K-RAS were found in one-third (5 of 15) of exophytic adenomas, but not at all in flat adenomas (Table 4). The frequency of K-RAS mutations in early colon cancer with adenoma (68%) was significantly higher than that in early colon cancer de novo (28%; P < 0.01, χ2 test; Table 3). The frequency of bi-allelic mutations in early colon cancer with adenoma (28%) was also higher than that of early colon cancer de novo (8%). There was no significant difference in the tumor size between early cancer arising de novo and cancer with adenoma (Table 4).

Twenty-six of 94 (28%) tumors had a single K-RAS allele mutation and 17 of 94 (18%) tumors had bi-allelic mutations (Table 4). Two cases had three and four mutated alleles, patient 57C and 35C, respectively (see Table 2). These multiple mutations were studied by using PCR followed by hybridization of plasmid plaques with oligonucleotide probes specific for each mutation (Fig. 1,A). Mutations detected after cloning and sequencing (Fig. 1,B) were identical to those found by the dot-blotting hybridization in these two cases. Overall, the most frequent mutational pattern found was a codon 12 GGT (glycine) to a codon 12 GAT (aspartic acid) transition (32% of a total of 73 mutations identified), followed by codon 12 AGT (serine) transition (19% of mutations identified). In 11 of the 73 (15%) mutations, K-RAS was mutated to codon 12 GTT (valine) and in 10 (14%), K-RAS was mutated at codon 13 to GAC (aspartic acid). The proportion of the mutational pattern was similar between benign and malignant tumors (Table 4).

LOH at Tumor Suppressor Gene Loci.

Fig. 2 demonstrates typical examples of the LOH (Fig. 2,A) and MSI (Fig. 2,B) at the hMSH2 locus on chromosome 2p, hMLH1 locus on 3p, APC/MCC locus on 5q, p53 locus on 17p, and DCC/SMAD4 locus on 18q. The informativity and LOH results for all genes studied are individualized in Tables 1 and 2 and summarized in Table 3. LOH of chromosome 2p was found in 4 of 52 (8%) informative colon cancers, but not for any polyps. No significant difference was found in the frequency of LOH at 2p between polyps and cancers. LOH at chromosome 3p was found in 3 of 28 (11%) informative adenomas and 11 of 48 (23%) informative cancers. No significant difference was found in LOH at 3p between benign tumors and malignant tumors; however, the frequency of 3p LOH in early cancers arising de novo (33%) was significantly higher than that in early cancer with adenoma (5%; P < 0.03, Fisher’s exact test). LOH of chromosome 5q was found in 9 of 33 (27%) informative adenomas and 20 of 50 (40%) informative cancers. This frequency of 5q LOH is consistent with assessments of 5q LOH in cancers by our group and others (2, 3). No significant difference was found in the frequency of LOH at 5q between polyps and cancers. No LOH at 17p (0/32) was found in any informative benign cases similar to previous observations (2, 3), whereas 24 of 51 (47%) informative colorectal cancers had LOH at 17p (P < 0.0001, χ2 test). The frequency of LOH at 17p in early cancer de novo (44%) was similar to that in early cancer with adenoma (46%). No significant difference was found in depth of invasion, differentiation, and location of the cancer. LOH at 18q was found in 4 of 32 (16%) and 30 of 59 (51%) informative adenomas and cancers, respectively. The incidence of LOH at 18q in cancer was significantly higher than that in polyps (P = 0.0003; Table 3). This frequency of 18q LOH is similar to previous observations (2). The frequency of cancer with LOH at any locus (48 of 60) was significantly higher than that in polyps (13 of 33; P < 0.0001).

MSI.

Using the stringent criteria for determining MSI-H from a recent National Cancer Institute Workshop (39), none of the sporadic adenomas, whether flat or exophytic, demonstrated MSI-H (Table 1). We identified five cancers from the 60 analyzed (8.3%) that had MSI-H. Four of the MSI-H cancers were de novo, and one was an advanced cancer (Table 2). None of the early cancers with adenoma were MSI-H. There was no significant difference in the incidence of MSI-H between adenomas and cancers. There was a trend toward significance for MSI-H occurrence in de novo cancers compared with early cancers with adenoma (P = 0.055, Fisher’s exact test; Table 3). Additionally, there was a trend toward significance for MSI-H occurrence in well-differentiated cancers of any type (P = 0.052, Fisher’s exact test; Table 4). None of the MSI-H de novo cancers had LOH at 17p, but three of the four had LOH at 3p (Table 2).

Microsatellite instability-low (MSI-L), defined as the occurrence of a novel allele in <30% but >0% of markers tested when compared to normal tissue (39), was identified in 6 of 13 flat adenomas and 8 of 21 exophytic adenomas. Additionally, MSI-L tumors, which are reported to be similar in clinical and histological characteristics to microsatellite-stable tumors, were found in 13 of 25 de novo cancers, 9 of 25 of early cancers with adenoma, and 4 of 10 advanced cancers. There was no statistical difference in MSI-L occurrence between adenomas and cancers or between the subtypes of adenomas or subtypes of cancers.

We found no significant difference in K-RAS mutation frequency between benign polyps and malignant tumors, which suggests that K-RAS mutations are relatively early events in colorectal tumorigenesis, as previously described (1, 2). On the other hand, exophytic adenomas and cancers with adenoma had a significantly higher K-RAS mutation frequency than flat adenomas and de novo cancers, respectively, despite the similarity in overall tumor size. This finding suggests that K-RAS mutations are correlated with the morphological growth pattern of colorectal neoplasms and that exophytic adenomas may acquire these mutations at an early stage. The association of mutant K-RAS with an exophytic neoplasm seems to require simultaneous inactivation of the APC gene or its pathway. Mutant K-RAS has been observed in nondysplastic aberrant crypt foci, many of which may never progress or grow (40, 41). Thus, a solitary activating mutation in K-RAS may not be sufficient to sustain neoplastic growth.

Our data confirm the previous observation that codon 12 mutations of K-RAS occur more frequently in exophytic tumors compared to endophytic (nonpolypoid) tumors (40, 41, 42, 43, 44). The K-RAS gene encodes a 21-kDa guanosine triphosphatase protein (p21ras) which mediates signaling events regulating cell proliferation, and a single mutationally activated p21ras protein continuously induces cell proliferation (6). Increased cell growth activity induced by activated K-RAS mutations in the context of multistep carcinogenesis appears to be necessary for exophytic growth in colorectal neoplasia (40, 41, 44). Consistent with this concept, flat dysplastic lesions found in inflammatory bowel disease have a low rate of K-RAS mutations (45, 46, 47, 48) and rarely have mutations in APC(45, 49, 50, 51).

Bi-allelic mutations of K-RAS were present in exophytic tumors more frequently than flat tumors, which suggests that different genetically determined clonal expansions developed within the exophytic neoplasm. In two cases, three and four mutations of K-RAS were detected. Exposure to environmental mutagens can cause multiple mutations of a single cancer-related gene (52), each of which might contribute to separate clonal expansions in exophytic tumors. We suggest that each K-RAS mutation originates from different evolving subclones and that each may be detected with differing frequencies from a single tissue sample of an exophytic tumor. In this study, we examined neoplasms in which a potentially dominant or aggressive subclone might have not overtaken the entire structure of the tumor, thus allowing detection of the clonal heterogeneity. In other tumors, either one clone may have developed or sampling error at the time of microdissection may have missed other clones.

The frequency of colorectal cancers with allelic loss events was significantly higher than that of benign tumors, whereas the frequency of K-RAS mutations and the occurrence of MSI were not significantly different between cancers and benign tumors. Forty-seven percent (24 of 51) of cancers had LOH at 17p, while LOH at 17p was completely absent in all benign tumors. The incidence of LOH at 18q in cancers (51%) was also significantly higher than that in benign tumors (13%). There was no significant difference in LOH occurrence at chromosome loci 2p, 3p, and 5q between benign tumors and malignant tumors. These findings suggest that LOH at 17p and 18q are important events for malignant transformation of a benign lesion. In particular, our data are consistent with previous data suggesting that LOH at 17p is necessary for a benign lesion to become a malignant neoplasm (3).

LOH at chromosome 3p was significantly associated with cancers arising de novo. It is of interest that of the four cases of cancer arising de novo with MSI-H, three were associated with LOH at 3p (Table 2). However, the three other cancers arising de novo with LOH at 3p were MSI-L, which behaves like microsatellite-stable tumors clinically and are not associated with inactivation of the DNA MMR system. There are several genes on chromosome 3 that are involved in the pathogenesis of colorectal cancer, including hMLH1 and transforming growth factor β receptor II. One, both, or neither of these genes might play a role in cancers arising de novo.

We found no significant difference in the incidence of MSI between benign and malignant lesions. Five of 60 cancers (8.3%) demonstrated MSI-H, which is slightly lower than the frequency seen in previous studies (53, 54). This may be due to selection of these types of tumors which may have a different pathogenesis, or that these lesions may be early enough in their pathogenesis that sufficient mutations at microsatellite loci are not frequent enough for detection. Sporadic adenomas have a much lower frequency of MSI than their exophytic malignant counterparts (3% versus 15–20%) (55), and de novo cancers and early cancers with adenoma may be more similar to adenomas in this regard. Some MSI-H tumors demonstrated LOH at chromosome 3p, the location of hMLH1, while no LOH occurred at chromosome 2p, the location of hMSH2. LOH at chromosome 3p could explain the onset of MSI-H as an alternative mechanism to hypermethylation of the hMLH1 promoter, the predominant mechanism in sporadic MSH-H cancers (8, 9). Although MSI can be disguised as LOH electrophoretically, this would not be expected at both chromosome 3p loci analyzed. Furthermore, none of the de novo colorectal cancers with MSI-H had allelic loss at the p53 locus, the most important determinant of malignant onset, which suggests that these cancers with MSI develop in the absence of loss of the p53 tumor suppressor locus. This finding is consistent with a previous study that p53 gene mutations were detected less frequently from MSI tumors (56).

We propose the following genetic and morphological correlative scheme. Most cancers (80–85%) arise through LOH mechanisms. LOH at chromosome 5q may be required for both exophytic and flat adenoma development. K-RAS mutations (in association with inactivation of APC on chromosome 5q) are necessary for exophytic adenoma development and are essentially absent from flat adenomas. All tumors in this pathway subsequently have LOH events at both chromosome 18q and 17p, mediating malignant transformation. In the case of exophytic polyps, the result is a polypoid cancer. In the case of a flat adenoma, the result may be a cancer arising de novo, which overgrows the flat adenoma to the point of no recognizable remaining adenomatous tissue. Cancers arising de novo may additionally develop from flat adenomas with LOH of chromosome 3p, which might progress through other LOH events at 18q and 17p, or may progress through MSI mechanisms without LOH at 18q or 17p. The MSI mechanism, responsible for about 15% of colorectal tumor formation, is operative in some polypoid cancers as well. Because of the minimal overlap seen with MSI tumors and LOH at 17p in this study and others (56), it is likely that these two mechanisms are independent pathways for cancer development.

In summary, de novo colon cancers (i.e., flat cancers without any adenomatous component) developed with a unique pattern of genetic abnormalities that may include LOH of chromosome 3p in some cases, but excludes mutational activation of K-RAS. The lack of mutated K-RAS mutation is also seen in flat adenomas. It is possible that some flat adenomas may progress to de novo cancers with LOH of chromosome 3p. Our study indicates that colorectal neoplasms may develop along different genetic pathways that may determine the morphological variations observed in the human colon.

Fig. 1.

Identification of K-RAS mutations in tumor tissue by plaque hybridization (A) and direct DNA sequencing (B). In A, PCR products that contained the first coding exon of K-RAS were generated from tumor specimens of patients 35C and 57C (see Table 2) and cloned into a plasmid vector. The plaque lifts were hybridized to an oligonucleotide that is specific for wild-type, codon 12 aspartic acid, codon 12 serine, codon 12 alanine, codon 13 aspartic acid, codon 12 cysteine, and codon 12 valine. In B, we manually sequenced the region flanking codons 12 and 13 of the first exon of K-RAS. The upper panel of B shows the sequences from the tumor DNA of patient 35C, indicating four individual mutations of K-RAS. The lower panel of B shows the sequences from the tumor DNA of patient 57C, demonstrating three individual mutations of K-RAS. The mutations detected after cloning and sequencing were identical to those found by the dot blot hybridization.

Fig. 1.

Identification of K-RAS mutations in tumor tissue by plaque hybridization (A) and direct DNA sequencing (B). In A, PCR products that contained the first coding exon of K-RAS were generated from tumor specimens of patients 35C and 57C (see Table 2) and cloned into a plasmid vector. The plaque lifts were hybridized to an oligonucleotide that is specific for wild-type, codon 12 aspartic acid, codon 12 serine, codon 12 alanine, codon 13 aspartic acid, codon 12 cysteine, and codon 12 valine. In B, we manually sequenced the region flanking codons 12 and 13 of the first exon of K-RAS. The upper panel of B shows the sequences from the tumor DNA of patient 35C, indicating four individual mutations of K-RAS. The lower panel of B shows the sequences from the tumor DNA of patient 57C, demonstrating three individual mutations of K-RAS. The mutations detected after cloning and sequencing were identical to those found by the dot blot hybridization.

Close modal
Fig. 2.

LOH (A) and MSI (B) at chromosome 2p, 3p, 5q, 17p, and 18q microsatellite markers. DNA from the tumor (Lane T) and corresponding normal tissue (Lane N) were electrophoresed on 8% polyacrylamide gels.

Fig. 2.

LOH (A) and MSI (B) at chromosome 2p, 3p, 5q, 17p, and 18q microsatellite markers. DNA from the tumor (Lane T) and corresponding normal tissue (Lane N) were electrophoresed on 8% polyacrylamide gels.

Close modal

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

This work was supported by grants from the U.S. Public Health Service (CA72851 and DK02433), the Veterans Affairs Research Service, and the Robert Wood Johnson Foundation.

3

The abbreviations used are: MMR: mismatch repair; MSI: microsatellite instability; LOH: loss of heterozygosity; MSI-H, MSI-high; MSI-L, MSI-low.

Table 1

Individual adenomatous polyps with their identified genetic alterations

PatientSize (mm)LocationHistologyGradeK-RAS mutationaLOHMSIb
2p3p5q17p18q
Flat adenoma             
 1A Tc TA LGD — — — — — — MSI-L 1/9 
 2A TA HGD — — — LOH — — — 0/8 
 3A VA LGD — — — — — — — 0/10 
 4A TA LGD — — — — — — — 0/10 
 5A VA LGD 12 Asp — NI LOH — — MSI-L 1/10 
 6A TA HGD — — LOH LOH — — MSI-L 1/10 
 7A TA HGD — — — LOH — — MSI-L 2/10 
 8A TVA HGD 12 Asp — — — — — MSI-L 2/10 
 9A TA LGD — — NI — — LOH MSI-L 1/10 
 10A TA LGD — — — — NI — — 0/9 
 11A TA LGD — — — — — NI — 0/10 
 12A TA LGD — — — — — — — 0/8 
 13A TA LGD — — LOH — — LOH — 0/10 
Exophytic adenoma             
 14A TVA LGD — — — — — — — 0/10 
 15A TA LGD 12 Ser, 13 Asp — — — — — — 0/10 
 16A TA LGD 12 Asp, 12 Cys NI NI LOH — — — 0/5 
 17A TA HGD 12 Ala — — — — — — 0/10 
 18A TA LGD — — — — — — MSI-L 2/10 
 19A TVA HGD 12 Ser, 12 Ala — LOH — — — — 0/10 
 20A TA LGD — — — — — — — 0/10 
 21A TVA LGD — — — LOH — — — 0/10 
 22A VA HGD — — — — — — — 0/10 
 23A TA LGD 12 Asp, 12 Ser — — — — — — 0/9 
 24A TA HGD 12 Asp — — — — — MSI-L 2/9 
 25A TA LGD 12 Cys, 13 Asp — — — — — MSI-L 1/8 
 26A TA HGD 12 Val — — — — — MSI-L 1/8 
 27A TVA LGD — — NI — — — — 0/8 
 28A TVA HGD — — — — — — MSI-L 2/9 
 29A 19 VA HGD — — — — — — — 0/10 
 30A 15 TVA HGD 12 Val — — LOH — LOH — 0/9 
 31A 14 TA HGD 12 Val — NI NI NI NI — 0/5 
 32A 24 VA HGD — — — LOH — — MSI-L 2/9 
 33A 16 VA HGD — — — — — LOH MSI-L 2/10 
 34A 11 TA LGD 12 Cys — NI LOH — — MSI-L 2/9 
PatientSize (mm)LocationHistologyGradeK-RAS mutationaLOHMSIb
2p3p5q17p18q
Flat adenoma             
 1A Tc TA LGD — — — — — — MSI-L 1/9 
 2A TA HGD — — — LOH — — — 0/8 
 3A VA LGD — — — — — — — 0/10 
 4A TA LGD — — — — — — — 0/10 
 5A VA LGD 12 Asp — NI LOH — — MSI-L 1/10 
 6A TA HGD — — LOH LOH — — MSI-L 1/10 
 7A TA HGD — — — LOH — — MSI-L 2/10 
 8A TVA HGD 12 Asp — — — — — MSI-L 2/10 
 9A TA LGD — — NI — — LOH MSI-L 1/10 
 10A TA LGD — — — — NI — — 0/9 
 11A TA LGD — — — — — NI — 0/10 
 12A TA LGD — — — — — — — 0/8 
 13A TA LGD — — LOH — — LOH — 0/10 
Exophytic adenoma             
 14A TVA LGD — — — — — — — 0/10 
 15A TA LGD 12 Ser, 13 Asp — — — — — — 0/10 
 16A TA LGD 12 Asp, 12 Cys NI NI LOH — — — 0/5 
 17A TA HGD 12 Ala — — — — — — 0/10 
 18A TA LGD — — — — — — MSI-L 2/10 
 19A TVA HGD 12 Ser, 12 Ala — LOH — — — — 0/10 
 20A TA LGD — — — — — — — 0/10 
 21A TVA LGD — — — LOH — — — 0/10 
 22A VA HGD — — — — — — — 0/10 
 23A TA LGD 12 Asp, 12 Ser — — — — — — 0/9 
 24A TA HGD 12 Asp — — — — — MSI-L 2/9 
 25A TA LGD 12 Cys, 13 Asp — — — — — MSI-L 1/8 
 26A TA HGD 12 Val — — — — — MSI-L 1/8 
 27A TVA LGD — — NI — — — — 0/8 
 28A TVA HGD — — — — — — MSI-L 2/9 
 29A 19 VA HGD — — — — — — — 0/10 
 30A 15 TVA HGD 12 Val — — LOH — LOH — 0/9 
 31A 14 TA HGD 12 Val — NI NI NI NI — 0/5 
 32A 24 VA HGD — — — LOH — — MSI-L 2/9 
 33A 16 VA HGD — — — — — LOH MSI-L 2/10 
 34A 11 TA LGD 12 Cys — NI LOH — — MSI-L 2/9 
a

Mutations are shown with the number of the codon involved and the new amino acid expected.

b

MSI-H is based on ≥30% of markers with a novel allele when compared to normal tissue. MSI-L is based on >0% but <30% of markers with a novel allele. The number of positive markers out of the total are also indicated.

c

A, ascending colon; T, transverse colon; D, descending colon; S, sigmoid colon; R, rectum; TA, tubular adenoma; TVA, tubulo villous adenoma; VA, villous adenoma; LGD, low-grade dysplasia; HGD, high-grade dysplasia; M, no mutation, no LOH, or microsatellite stable; NI, not informative.

Table 2

Individual cancers with their identified genetic alterations

PatientSize (mm)LocationGradeK-RAS mutationaLOHMSIb
2p3p5q17p18q
Early cancer de novo            
 1C Tc Well 12 Asp NI — — — — MSI-L 1/6 
 2C Well — — LOH LOH LOH LOH MSI-L 1/7 
 3C 19 Well 12 Ser, 13 Asp — NI — NI LOH MSI-L 1/6 
 4C Moderate 12 Ser — LOH LOH — — MSI-H 3/8 
 5C Well 12 Cys — NI LOH LOH LOH — 0/6 
 6C Well — — — LOH — LOH MSI-L 1/8 
 7C 14 Well — — — LOH NI LOH MSI-H 2/5 
 8C Well — NI NI LOH NI LOH — 0/6 
 9C 14 Well — — — — LOH LOH — 0/9 
 10C 13 Well — — NI — NI LOH MSI-L 1/5 
 11C Well — — LOH NI — — MSI-H 3/8 
 12C 14 Well 12 Asp — LOH LOH NI NI MSI-L 1/5 
 13C 14 Well — — — — NI — MSI-L 1/7 
 14C Well — — LOH — — — MSI-H 3/10 
 15C Moderate — — — — — — MSI-L 1/10 
 16C Well — NI NI NI LOH — — 0/5 
 17C Well — — — — — — MSI-L 1/10 
 18C 10 Well — NI NI LOH — — MSI-L 1/5 
 19C 10 Well — — — LOH LOH LOH — 0/9 
 20C Well — — NI — NI — MSI-L 1/5 
 21C 11 Well — — LOH LOH LOH LOH MSI-L 1/10 
 22C 12 Well — — — — — — — 0/9 
 23C Well 12 Asp — — — LOH LOH MSI-L 1/9 
 24C 10 Well — — — — — — — 0/8 
 25C Well 12 Val, 12 Ala — — — LOH — — 0/10 
Early cancer with adenoma            
 26C 18 Moderate 12 Asp NI NI NI LOH — MSI-L 1/6 
 27C 14 Well 12 Ser — — LOH — — MSI-L 1/10 
 28C 11 Well 12 Val — — — LOH LOH — 0/10 
 29C Well — — — LOH — LOH MSI-L 1/9 
 30C Well — — — — LOH LOH — 0/10 
 31C 12 Well — NI NI NI LOH LOH — 0/5 
 32C 12 NI Well 12 Asp, 13 Asp — — LOH — — MSI-L 2/8 
 33C 18 Moderate 12 Ser, 12 Val — NI NI — LOH — 0/6 
 34C 13 Moderate 12 Asp LOH — LOH LOH — MSI-L 1/9 
 35C 11 NI Well 12 Asp, 12 Ala, 12 Ser, 13 Asp LOH — — — LOH — 0/10 
 36C 15 Well 12 Asp, 12 Val — — LOH LOH LOH — 0/10 
 37C 13 Moderate — — — — LOH LOH MSI-L 2/9 
 38C Moderate 12 Asp — — — LOH LOH — 0/10 
 39C 10 Well 12 Cys — — NI — LOH — 0/8 
 40C Moderate — — — NI — LOH — 0/9 
 41C 16 NI Well — — — — — — MSI-L 1/10 
 42C 11 NI Well 13 Asp — — LOH — — — 0/10 
 43C NI Well — — — — — LOH — 0/9 
 44C Moderate 12 Ser, 13 Asp NI NI LOH NI — — 0/7 
 45C 14 Moderate 12 Asp — — — — — — 0/10 
 46C 15 Well 12 Val, 13 Asp — LOH LOH — LOH — 0/8 
 47C Well 12 Asp NI NI — LOH LOH — 0/7 
 48C NI Well 12 Val — — — LOH — MSI-L 1/10 
 49C 10 Well — — — — LOH — MSI-L 1/9 
 50C 10 Well 12 Asp, 12 Ala NI — — — — — 0/9 
Advanced cancer            
 51C Well 12 Ala, 12 Asp — LOH — NI — MSI-L 2/8 
 52C 40 NI Well — LOH — — — — MSI-L 1/10 
 53C 30 Well 12 Cys, 12 Ser — — — — — — 0/10 
 54C 65 Well 12 Asp — — LOH LOH LOH MSI-H 4/10 
 55C 18 Moderate 12 Asp, 12 Arg — LOH LOH LOH LOH — 0/8 
 56C 50 Well 12 Val LOH — NI LOH LOH — 0/9 
 57C 24 Well 12 Cys, 12 Ser, 12 Val — LOH NI LOH LOH MSI-L 2/9 
 58C 14 NI Moderate 13 Asp — LOH — — — — 0/10 
 59C 50 Moderate 12 Ser, 12 Asp — — NI LOH LOH — 0/8 
 60C 20 Moderate — — — — — — MSI-L 2/9 
PatientSize (mm)LocationGradeK-RAS mutationaLOHMSIb
2p3p5q17p18q
Early cancer de novo            
 1C Tc Well 12 Asp NI — — — — MSI-L 1/6 
 2C Well — — LOH LOH LOH LOH MSI-L 1/7 
 3C 19 Well 12 Ser, 13 Asp — NI — NI LOH MSI-L 1/6 
 4C Moderate 12 Ser — LOH LOH — — MSI-H 3/8 
 5C Well 12 Cys — NI LOH LOH LOH — 0/6 
 6C Well — — — LOH — LOH MSI-L 1/8 
 7C 14 Well — — — LOH NI LOH MSI-H 2/5 
 8C Well — NI NI LOH NI LOH — 0/6 
 9C 14 Well — — — — LOH LOH — 0/9 
 10C 13 Well — — NI — NI LOH MSI-L 1/5 
 11C Well — — LOH NI — — MSI-H 3/8 
 12C 14 Well 12 Asp — LOH LOH NI NI MSI-L 1/5 
 13C 14 Well — — — — NI — MSI-L 1/7 
 14C Well — — LOH — — — MSI-H 3/10 
 15C Moderate — — — — — — MSI-L 1/10 
 16C Well — NI NI NI LOH — — 0/5 
 17C Well — — — — — — MSI-L 1/10 
 18C 10 Well — NI NI LOH — — MSI-L 1/5 
 19C 10 Well — — — LOH LOH LOH — 0/9 
 20C Well — — NI — NI — MSI-L 1/5 
 21C 11 Well — — LOH LOH LOH LOH MSI-L 1/10 
 22C 12 Well — — — — — — — 0/9 
 23C Well 12 Asp — — — LOH LOH MSI-L 1/9 
 24C 10 Well — — — — — — — 0/8 
 25C Well 12 Val, 12 Ala — — — LOH — — 0/10 
Early cancer with adenoma            
 26C 18 Moderate 12 Asp NI NI NI LOH — MSI-L 1/6 
 27C 14 Well 12 Ser — — LOH — — MSI-L 1/10 
 28C 11 Well 12 Val — — — LOH LOH — 0/10 
 29C Well — — — LOH — LOH MSI-L 1/9 
 30C Well — — — — LOH LOH — 0/10 
 31C 12 Well — NI NI NI LOH LOH — 0/5 
 32C 12 NI Well 12 Asp, 13 Asp — — LOH — — MSI-L 2/8 
 33C 18 Moderate 12 Ser, 12 Val — NI NI — LOH — 0/6 
 34C 13 Moderate 12 Asp LOH — LOH LOH — MSI-L 1/9 
 35C 11 NI Well 12 Asp, 12 Ala, 12 Ser, 13 Asp LOH — — — LOH — 0/10 
 36C 15 Well 12 Asp, 12 Val — — LOH LOH LOH — 0/10 
 37C 13 Moderate — — — — LOH LOH MSI-L 2/9 
 38C Moderate 12 Asp — — — LOH LOH — 0/10 
 39C 10 Well 12 Cys — — NI — LOH — 0/8 
 40C Moderate — — — NI — LOH — 0/9 
 41C 16 NI Well — — — — — — MSI-L 1/10 
 42C 11 NI Well 13 Asp — — LOH — — — 0/10 
 43C NI Well — — — — — LOH — 0/9 
 44C Moderate 12 Ser, 13 Asp NI NI LOH NI — — 0/7 
 45C 14 Moderate 12 Asp — — — — — — 0/10 
 46C 15 Well 12 Val, 13 Asp — LOH LOH — LOH — 0/8 
 47C Well 12 Asp NI NI — LOH LOH — 0/7 
 48C NI Well 12 Val — — — LOH — MSI-L 1/10 
 49C 10 Well — — — — LOH — MSI-L 1/9 
 50C 10 Well 12 Asp, 12 Ala NI — — — — — 0/9 
Advanced cancer            
 51C Well 12 Ala, 12 Asp — LOH — NI — MSI-L 2/8 
 52C 40 NI Well — LOH — — — — MSI-L 1/10 
 53C 30 Well 12 Cys, 12 Ser — — — — — — 0/10 
 54C 65 Well 12 Asp — — LOH LOH LOH MSI-H 4/10 
 55C 18 Moderate 12 Asp, 12 Arg — LOH LOH LOH LOH — 0/8 
 56C 50 Well 12 Val LOH — NI LOH LOH — 0/9 
 57C 24 Well 12 Cys, 12 Ser, 12 Val — LOH NI LOH LOH MSI-L 2/9 
 58C 14 NI Moderate 13 Asp — LOH — — — — 0/10 
 59C 50 Moderate 12 Ser, 12 Asp — — NI LOH LOH — 0/8 
 60C 20 Moderate — — — — — — MSI-L 2/9 
a

Mutations are shown with the number of the codon involved and the new amino acid expected.

b

MSI-H is based on ≥30% of markers with a novel allele when compared to normal tissue. MSI-L is based on >0% but <30% of markers with a novel allele. The number of positive markers out of the total are also indicated.

c

A, ascending colon; T, transverse colon; D, descending colon; S, sigmoid colon; R, rectum; TA, tubular adenoma; TVA, tubulo villous adenoma; VA, villous adenoma; LGD, low-grade dysplasia; HGD, high-grade dysplasia; —, no mutation, no LOH, or microsatellite stable; NI, not informative.

Table 3

Comparison of genetic alterations identified from adenomas and cancers

TumorsMutationLOHMSI
K-RAS2p3p5q17p18qOne or more loci
+P              aLOHPLOHPLOHPLOHPLOHPLOHP+P
Total                         
 Adenomatous polyp 13 21  33  25  24  32  28  13 20  34  
 Cancer 32 28 NSb 48 NS 11 37 NS 20 30 NS 24 27 <0.0001 30 29 =0.0003 48 12 <0.0001 55 NS 
Adenoma                         
 Size                         
  Small adenoma (≤10 mm) 10 18  27  21  22  27  25  19  26  
  Large adenoma (>10 mm) NS NS NS NS NS NS NS NS 
 Shape                         
  Flat adenoma 11  13    12  10   13  
  Exophytic adenoma 11 10 =0.0296 20 NS 16 NS 15 NS 20 NS 18 NS 13 NS 21 NS 
 Nuclear grade                         
  High-grade dysplasia 13  18  13  15  18  16  13  19  
  Low-grade dysplasia NS 15 NS 12 NS NS 14 NS 12 NS NS 15 NS 
 Differentiation                         
  Tubullar 12  20  15  15  19  17  13  21  
  Tubulovillous         
  Villous NS NS NS NS NS NS NS NS 
Cancer                         
 Early cancer de novo 18  21  12  10  10  11 13  18  21  
 Early cancer with adenoma 17 =0.0046 19 NS 19 =0.0245 11 13 NS 11 13 NS 14 11 NS 22 NS 25 NS 
                        =0.055 
 Depth of invasion                         
  Submucosa 24 26  40  31  25  19 23  25 24  40 10  46  
  Muscularis propria NS NS NS NS NS NS NS NS 
 Differentiation                         
  Well 23 24  37  29  16 24  18 20  24 21  37  41  
  Moderate 10 NS 11 NS NS NS NS NS 11 NS 14 NS 
                        =0.052 
 Location                         
  Proximalc         
  Distald 21 20 NS 34 NS 25 NS 13 21 NS 20 15 NS 17 24 NS 33 NS 39 NS 
TumorsMutationLOHMSI
K-RAS2p3p5q17p18qOne or more loci
+P              aLOHPLOHPLOHPLOHPLOHPLOHP+P
Total                         
 Adenomatous polyp 13 21  33  25  24  32  28  13 20  34  
 Cancer 32 28 NSb 48 NS 11 37 NS 20 30 NS 24 27 <0.0001 30 29 =0.0003 48 12 <0.0001 55 NS 
Adenoma                         
 Size                         
  Small adenoma (≤10 mm) 10 18  27  21  22  27  25  19  26  
  Large adenoma (>10 mm) NS NS NS NS NS NS NS NS 
 Shape                         
  Flat adenoma 11  13    12  10   13  
  Exophytic adenoma 11 10 =0.0296 20 NS 16 NS 15 NS 20 NS 18 NS 13 NS 21 NS 
 Nuclear grade                         
  High-grade dysplasia 13  18  13  15  18  16  13  19  
  Low-grade dysplasia NS 15 NS 12 NS NS 14 NS 12 NS NS 15 NS 
 Differentiation                         
  Tubullar 12  20  15  15  19  17  13  21  
  Tubulovillous         
  Villous NS NS NS NS NS NS NS NS 
Cancer                         
 Early cancer de novo 18  21  12  10  10  11 13  18  21  
 Early cancer with adenoma 17 =0.0046 19 NS 19 =0.0245 11 13 NS 11 13 NS 14 11 NS 22 NS 25 NS 
                        =0.055 
 Depth of invasion                         
  Submucosa 24 26  40  31  25  19 23  25 24  40 10  46  
  Muscularis propria NS NS NS NS NS NS NS NS 
 Differentiation                         
  Well 23 24  37  29  16 24  18 20  24 21  37  41  
  Moderate 10 NS 11 NS NS NS NS NS 11 NS 14 NS 
                        =0.052 
 Location                         
  Proximalc         
  Distald 21 20 NS 34 NS 25 NS 13 21 NS 20 15 NS 17 24 NS 33 NS 39 NS 
a

Significance level of difference was determined using Fisher’s exact test or the χ2 test.

b

NS, not significant.

c

Proximal colon includes ascending colon and transverse colon.

d

Distal colon includes sites distal to and including the descending colon.

Table 4

Comparison of K-RAS mutations found in adenomas and cancers

Comparison of K-RAS mutations found in adenomas and cancers
Comparison of K-RAS mutations found in adenomas and cancers
1
Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis.
Cell
,
61
:
759
-767,  
1990
.
2
Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development.
N. Engl. J. Med.
,
319
:
525
-532,  
1988
.
3
Boland C. R., Sato J., Appelman H. D., Bresalier R. S., Feinberg A. P. Microallelotyping defines the sequence and tempo of allelic losses at tumour suppressor gene loci during colorectal cancer progression.
Nat. Med.
,
1
:
902
-909,  
1995
.
4
Forrester K., Almoguera C., Han K., Grizzle W. E., Perucho M. Detection of high incidence of Kras oncogenes during human colon tumorigenesis.
Nature (Lond.)
,
327
:
298
-303,  
1987
.
5
Bos J. L., Fearon E. R., Hamilton S. R., Verlaan-de Vries M., van Boom J. H., van der E. A. J., Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers.
Nature (Lond.)
,
327
:
293
-297,  
1987
.
6
Barbacid M. ras genes.
Annu. Rev. Biochem.
,
56
:
779
-827,  
1987
.
7
Marra G., Boland C. R. DNA repair and colorectal cancer.
Gastroenterol. Clin. North Am.
,
25
:
755
-772,  
1996
.
8
Herman J. G., Umar A., Polyak K., Graff J. R., Ahuja N., Issa J-P. J., Markowitz S., Willson J. K. V., Hamilton S. R., Kinzler K. W., Kane M. F., Kolodner R. D., Vogelstein B., Kunkel T. A., Baylin S. B. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.
Proc. Natl. Acad. Sci. USA
,
95
:
6870
-6875,  
1998
.
9
Viegl M. L., Kasturi L., Olechnowicz J., Ma A. H., Lutterbaugh J. D., Periyasamy S., Li G-M., Drummond J., Modrich P. L., Sedwick W. D., Markowitz S. D. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers.
Proc. Natl. Acad. Sci. USA
,
95
:
8698
-8702,  
1998
.
10
Markowitz S., Wang J., Myeroff L., Parsons R., Sun L. Z., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B., Brattain M., Willson J. K. V. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability.
Science (Washington DC)
,
268
:
1336
-1338,  
1995
.
11
Souza R. F., Appel R., Yin J., Wang S., Smolinski K. N., Abraham J. M., Zou T. T., Shi Y. Q., Lei J., Cottrell J., Cymes K., Biden K., Simms L., Leggett B., Lynch P. M., Frazier M., Powell S. M., Harpaz N., Sugimura H., Young J., Meltzer S. J. Microsatellite instability in the insulin-like growth factor receptor gene in gastrointestinal tumours.
Nat. Genet.
,
14
:
255
-257,  
1996
.
12
Rampino N., Yamamoto H., Ionov Y., Li Y., Sawai H., Reed J. C., Perucho M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype.
Science (Washington DC)
,
275
:
967
-969,  
1997
.
13
Atkin W. S., Morson B. C., Cuzick J. Long-term risk of colorectal cancer after excision of rectosigmoid adenomas.
N. Engl. J. Med.
,
326
:
658
-662,  
1992
.
14
Haggitt R. C., Glotzbach R. E., Soffer E. E., Wruble L. D. Prognostic factors in colorectal carcinomas arising in adenomas: implications for lesions removed by endoscopic polypectomy.
Gastroenterology
,
89
:
328
-336,  
1985
.
15
Morson B. C. The polyp cancer sequence in the large bowel.
Proc. R. Soc. Med.
,
67
:
451
-457,  
1974
.
16
Bedenne L., Faivre J., Boutron M. C., Piard F., Cauvin J. M., Hillon P. Adenoma-carcinoma sequence or “de novo ” carcinogenesis?: a study of adenomatous remnants in a population-based series of large bowel cancers.
Cancer (Phila.)
,
69
:
883
-888,  
1992
.
17
Kuramoto S., Oohara T. Flat early cancers of the large intestine.
Cancer (Phila.)
,
64
:
950
-955,  
1989
.
18
Shimoda T., Ikegami M., Fujisaki J., Matsui T., Aizawa S., Ishikawa E. Early colorectal carcinoma with special reference to its development de novo.
Cancer (Phila.)
,
64
:
1138
-1146,  
1989
.
19
Iishi H., Kitamura S., Nakaizumi A., Tatsuta M., Otani T., Okuda S., Ishiguro S. Clinicopathological features and endoscopic diagnosis of superficial early adenocarcinomas of the large intestine.
Dig. Dis. Sci.
,
38
:
1333
-1337,  
1993
.
20
Tada S., Yao T., Iida M., Koga H., Hizawa K., Fujishima M. A clinicopathologic study of small flat colorectal carcinoma.
Cancer (Phila.)
,
74
:
2430
-2435,  
1994
.
21
Matsumoto T., Iida M., Yao T., Fujishima M. Role of nonpolypoid neoplastic lesions in the pathogenesis of colorectal cancer.
Dis. Colon Rectum
,
37
:
450
-455,  
1994
.
22
Wada R., Matsukuma S., Abe H., Kuwabara N., Suda K., Arakawa A., Kitamura S. Histopatholoigcal studies of superficial-type early colorectal carcinoma.
Cancer (Phila.)
,
77
:
44
-50,  
1996
.
23
Minamoto T., Sawaguchi K., Ohta T., Itoh T., Mia M. Superficial-type adenomas and adenocarcinomas of the colon and rectum: a comparative morphological study.
Gastroenterology
,
106
:
1436
-1443,  
1994
.
24
Kubota O., Kino I., Kimura T., Harada Y. Nonpolypoid adenomas and adenocarcinomas found in background mucosa of surgically resected colons.
Cancer (Phila.)
,
77
:
621
-626,  
1996
.
25
Kuramoto S., Ihara O., Sakai S., Shimazu R., Kaminishi M., Oohara T. Depressed adenoma in the large intestine: endoscopic features.
Dis. Colon Rectum
,
33
:
108
-112,  
1990
.
26
Kuramoto S., Oohara T. How do colorectal cancers develop?.
Cancer (Phila.)
,
75
:
1534
-1538,  
1995
.
27
Wolber R. A., Owen D. A. Flat adenomas of the colon.
Hum. Pathol.
,
22
:
70
-74,  
1991
.
28
Owen D. A. Flat adenoma, flat carcinoma, and de novo carcinoma of the colon.
Cancer (Phila.)
,
77
:
3
-5,  
1996
.
29
Jaramillo E., Watanabe M., Slezak P., Rubio C. Flat neoplastic lesions of the colon and rectum detected by high-resolution video endoscopy and chromoscopy.
Gastrointest. Endosc.
,
42
:
114
-122,  
1995
.
30
Jass J. R., Sobin L. H. Histological typing of the intestinal tumors Jass J. R. Sobin L. H. Watanabe H. eds. .
World Health Organization Histologic Classification of Gastrointestinal Tumors
,
: Springer-Verlag Berlin, Germany  
1989
.
31
Carethers J. M., Hawn M. T., Greenson J. K., Hitchcock C. L., Boland C. R. Prognostic significance of allelic loss at chromosome 18q21 for stage II colorectal cancer.
Gastroenterology
,
114
:
1188
-1195,  
1998
.
32
Peltomaki P., Aaltonen L. A., Sistonen P., Pylkkanen L., Mecklin J. P., Jarvinen H., Green J. S., Jass J. R., Weber J. L., Leach F. S., Petersen G. M., Hamilton S. R., de la Chapelle A., Vogelstein B. Genetic mapping of a locus predisposing to human colorectal cancer.
Science (Washington DC)
,
260
:
810
-812,  
1993
.
33
Weber J. L., Kwitek A. E., May P. E. Dinucleotide repeat polymorphisms at the D5S107, D5S108, D5S111, D5S117 and D5S118 loci.
Nucleic Acids Res.
,
18
:
4035
1990
.
34
Bronner C. E., Baker S. M., Morrison P. T., Warren G., Smith L. G., Lescoe M. K., Kane M., Earabino C., Lipford J., Lindblom A., Tannergard P., Bollag R. J., Godwin A. R., Ward D., Nordenskjold M., Fishel R., Kolodner R., Liskay R. M. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer.
Nature (Lond.)
,
368
:
258
-261,  
1994
.
35
Spirio L., Joslyn G., Nelson L., Leppert M., White R. A CA repeat 30–70 kb downstream from the adenomatous polyposis coli (APC) gene.
Nucleic Acids Res.
,
19
:
6348
1991
.
36
Oliphant A. R., Wright E. C., Swensen J., Gruis N. A., Goldgar D., Skolnick M. H. Dinucleotide repeat polymorphisms at the D17S513 locus.
Nucleic Acids Res.
,
19
:
4794
1991
.
37
Futreal P. A., Barrett J. C., Wiseman R. W. An Alu polymorphism intragenic to the TP53 gene.
Nucleic Acids Res.
,
19
:
6977
1991
.
38
Weber J. L., May P. E. Dinucleotide repeat polymorphisms at the D18S35 locus.
Nucleic Acids Res.
,
18
:
6465
1990
.
39
Boland C. R., Thibodeau S. N., Hamilton S. R., Sidransky D., Eshleman J. R., Burt R. W., Meltzer S. J., Rodriguez-Bigas M. A., Fodde R., Ranzani G. N., Srivastava S. A National Cancer Institute Workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.
Cancer Res.
,
58
:
5248
-5257,  
1998
.
40
Jen J., Powell S. M., Papadopoulos N., Smith K. J., Hamilton S. R., Vogelstein B., Kinzler K. W. Molecular determinants of dysplasia in colorectal lesions.
Cancer Res.
,
54
:
5523
-5526,  
1994
.
41
Nucci M. R., Robinson C. R., Longo P., Canpbell P., Hamilton S. R. Phenotypic and genotypic characteristics of aberrant crypt foci in human colorectal mucosa.
Hum. Pathol.
,
28
:
1396
-1407,  
1997
.
42
Chiang J-M., Chou Y-H. W., Chou T-B. K-ras codon 12 mutation determines the polypoid growth of colorectal cancer.
Cancer Res.
,
58
:
3289
-3293,  
1998
.
43
Minamoto T., Sawaguchi K., Mai M., Yamashita N., Sugimura T., Esumi H. Infrequent K-ras activation in superficial-type (flat) colorectal adenomas and adenocarcinomas.
Cancer Res.
,
54
:
2841
-2844,  
1994
.
44
Yamagata S., Muto T., Uchida Y., Masaki T., Higuchi Y., Sawada T., Hirooka T. Polypoid growth and K-ras codon 12 mutation in colorectal cancer.
Cancer (Phila.)
,
75
:
953
-957,  
1995
.
45
Umetani N., Sasaki S., Watanabe T., Shinozaki M., Matsuda K., Ishigani H., Ueda E., Muto T. Genetic alterations in ulcerative colitis-associated neoplasia focusing on APC, K-ras gene and microsatellite instability.
Jpn. J. Cancer Res.
,
90
:
1081
-1087,  
1999
.
46
Holzmann K., Klump B., Borchard F., Hsieh C. J., Kuhn A., Gaco V., Gregor M., Porschen R. Comparative analysis of histology, DNA content, p53 and Ki-ras mutations in colectomy specimens with long-standing ulcerative colitis.
Int. J. Cancer
,
76
:
1
-6,  
1998
.
47
Tsuda T., Mochizuki M., Wakasa H. DeteDction of c-ras gene mutation and expression of p21 protein in dysplasias and carcinomas complicating ulcerative colitis.
J. Gastroenterol.
,
30 (Suppl. 8)
:
30
-32,  
1995
.
48
Lyda M. H., Noffsinger A., Belli J., Fenoglio-Preiser C. M. Microsatellite instability and K-ras mutations in patients with ulcerative colitis.
Hum. Pathol.
,
31
:
665
-671,  
2000
.
49
Fogt F., Vortmeyer A. O., Goldman H., Giordano T. J., Merino M. J., Zhuang Z. Comparison of genetic alterations in colonic adenoma and ulcerative colitis-associated dysplasia and carcinoma.
Hum. Pathol.
,
29
:
131
-136,  
1998
.
50
Tarmin L., Yin J., Harpaz N., Kozam M., Noordzij J., Antonio L. B., Jiang H. Y., Chan O., Cymes K., Meltzer S. J. Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms.
Cancer Res.
,
55
:
2053
-2058,  
1995
.
51
Olschwang S., Slezak P., Roze M., Jaramillo E., Nakano H., Koizumi K., Rubio C., Laurent-Puig P., Thomas G. Somatically acquired genetic alterations in flat colorectal neoplasias.
Int. J. Cancer
,
77
:
366
-369,  
1998
.
52
Bollaf G., McCormick F. Regulators and effectors of ras proteins.
Annu. Rev. Cell Biol.
,
7
:
601
-632,  
1991
.
53
Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon.
Science (Washington DC)
,
260
:
816
-819,  
1993
.
54
Gryfe R., Kim H., Hsieh E. T. K., Aronson M. D., Holowaty E. J., Bull S. B., Redston M., Gallinger S. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.
N. Engl. J. Med.
,
342
:
69
-77,  
2000
.
55
Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer.
Cell
,
87
:
159
-170,  
1996
.
56
Olschwang S., Hamelin R., Laurent-Puig L., Thuille B., De Rycke Y., Li Y-J., Muzeau F., Girodet J., Salmon R-J., Thomas G. Alternative genetic pathways in colorectal carcinogenesis.
Proc. Natl. Acad. Sci. USA
,
94
:
12122
-12127,  
1997
.