The mutant strain Long-Evans Cinnamon (LEC) rat, which accumulates copper in the liver because of a mutation in the Atp7bgene, encoding a copper-ATPase, is a model of Wilson disease. It spontaneously develops hepatitis, and subsequently hepatocellular carcinoma and cholangiofibrosis. Excess intracellular copper has been thought to induce DNA damage through reactive oxygen species produced by Cu (II)/Cu (I) redox cycling, and also by direct interaction with DNA. We have developed lacI transgenic Wilson disease(WND-B) rats by mating LEC with Big Blue F344 rats carrying a lambda shuttle vector harboring the lacI gene. lacI mutations of the livers of C-B heterozygous(Atp7b w/m, lacI) and WND-B homozygous(Atp7b m/m, lacI) rats at 6, 24, and 40 weeks of ages were analyzed. Mutant frequencies in the WND-B rats were 2.0 ± 0.7 × 105, 5.3 ± 0.9 × 105, and 5.3 ± 1.0 × 105, respectively,significantly higher than those of C-B rats. Nucleotide sequence analysis revealed that the frequency of deletion mutations of more than two nucleotides were much higher, 15% in WND-B rats, but only 2% in C-B rats. In addition, the average size of deletion was larger in the former. Loss of oligonucleotide-repeat units was specific and relatively frequent in WND-B rats. This type of mutation might be implicated in the induction of DNA strand scissions by reactive oxygen species. These findings suggest that the increase in mutant frequencies and/or the specific type of mutation according to copper accumulation play a crucial role in hepatocarcinogenesis in LEC rats.

The LEC3mutant rat developed at Hokkaido University accumulates copper in the liver because of a mutation in the Atp7b gene encoding a copper-ATPase (1, 2, 3). This genetic defect is the same as that which exists in Wilson disease patients (4). Under standard breeding conditions, the LEC rat develops hepatitis at around 20 weeks of age, and HCCs at around 18 months of age. Hepatitis development has also been linked to copper accumulation in the studies using F1 backcross rats (5, 6). Further, administration of copper chelating agents has been seen to prevent hepatitis development and HCC development (7, 8). It has been reported by us and others that 8-OHdG (9),1,N6-ethenodeoxyadenosine (varepsilon dA), and 3,N4-ethenodeoxycytidine(varepsilon dC) DNA adducts in the livers are increased(10), whereas levels of antioxidant, such as ascorbate and ubiquinol in plasma, are decreased in LEC rats (11). Etheno-adducts produced from other bases are also known to be produced under oxidative conditions (12, 13). Thus, it is considered that the pro-oxidant status associated with copper accumulation causes cellular damage through ROS produced by Cu (II)/Cu(I) redox cycling. It has been reported that copper itself directly interacts with DNA and results in DNA alterations (14, 15). There is no evidence of infiltration of inflammatory cells in LEC rat livers during hepatitis development, and no induction of nitric oxide synthase (iNOS) has been observed.4

In previous studies, levels of oxidative DNA damage, including 8-OHdG and etheno-adducts, were shown to be higher in the acute phase of hepatitis than before onset or during the chronic phase (9, 10). Because the hepatocyte turnover rate also peaks with acute hepatitis (16), DNA modifications caused by oxidative DNA damage could be efficiently fixed as mutations.

Although 8-OHdG and etheno-adducts are known to produce mutations in vitro(17, 18, 19), their roles in vivo with regard to cancer development have not been well elucidated. The LEC rat model has distinct advantages for clarifying the role of oxidative DNA damage in hepatitis-hepatoma development. In particular, analysis of the spectra of mutants induced during hepatitis development might provide information on the types of mutation induced in vivo by oxidative DNA damage.

In this study, we analyzed the MF in the livers of WND-B rats harboring homozygous Atp7b mutations (Atp7b m/m) and the lacI gene, with reference to hepatitis development. Further,the mutational spectrum of the lacI mutants was analyzed.

Animals.

Female and male Big Blue rats (F344 Tac[LIZd]; homozygous) at 6 weeks of age were purchased from Stratagene (La Jolla, CA). The rats were maintained at 24 ± 1°C with a 12-h light and dark cycle and fed a diet (MF, Oriental Yeast, Japan) and tap water ad libitum. Male and female LEC rats purchased from Charles River Japan Inc. were mated with Big Blue rats. The F1 generation was then mated with LEC rats again. A subset of rats that are homozygous for the Atp7b mutation (Atp7b m/m) and harbor the lacI gene, named WND-B rats, were used as the experimental group. Another subset of rats that are heterozygous for the Atp7b mutation (Atp7b w/m) and harbor the lacI gene, named C-B rats, were used as a control group. For detection of the lacI gene, which should be heterozygous,dot blot analysis of tail DNA at 4–6 weeks of age was performed according to the method previously reported (20). Genotyping of each rat for Atp7b was performed by Southern blot analysis of the tail or liver DNA with a cDNA probe of rWDF41R30. In this analysis, the wild-type allele of the Atp7b gene appeared as a single band, and the mutant allele showed no signals.

All animals were cared for and maintained in accordance with the National Institute for Environmental Studies animal care guidelines.

Determination of lacI Gene MF.

Liver DNA extraction and transgenic lambda phage rescue were carried out according to the manufacturer’s instructions (Stratagene, La Jolla, CA). Briefly, liver DNA was packaged by mixing with a phage packaging extracts, Transpack. Rescued phages were then plated on an SCS-8 bacterial cell lawn in the presence of 5-bromo-4-chloro-3-indolyl-β-d-galactoside, and blue-colored plaques were counted as lacI mutants. MF was obtained as the number of blue-colored plaques over the total number of plaques. Blue plaques were isolated and subjected to mutation analysis.

Analysis and Classification of Mutations.

DNA was extracted by SM buffer from the blue plaques subcloned. The lacI gene covering the coding and promoter regions was amplified by PCR in a thermal cycler using a primer pair of 5′-GACACCATCGAATGGTGCAA-3′ and 5′-TTCCACACAACATACGAGCC-3′. The PCR products were subjected to restriction-single-stranded conformational polymorphism analysis according to the method described by Ushijima et al.(21). After locating the mutation in either of the A-I fragments, the PCR products of the fragment containing the mutation were then directly sequenced using ABI 388 or ABI 310 sequencers (Applied Biosystems, Japan). The jackpot mutants were excluded to avoid the influence of clonal growth. When bp deletion or insertion mutations were detected in the repeats of a sequence, the first position in the 5′ upstream site was assigned as the mutation site.

Determination of Plasma GOT and GPT Levels.

GOT and GPT were determined using a Hitachi 736 autoanalyzer (Hitachi Tokyo, Japan).

Statistical Analysis of Data.

Statistical analyses of MF data and mutation spectra were carried out by the t test and χ2 test using STATVIEW version 4.5 (Abacus Concepts, Inc., Berkeley, CA),respectively.

MF in the lacI Gene of the Liver.

The results for MF in the lacI gene of the livers of C-B(Atp7b w/m, lacI) and WND-B (Atp7b m/m, lacI) rats at 6, 24, and 40 weeks of age are summarized in Table 1. MFs in the C-B were 1.3 ± 0.3 × 105 at 6 weeks of age,and increased with age, culminating at 2.4 ± 1.2 × 105at 40 weeks, in line with values reported for F344 Big Blue rats(22, 23). The MF in the WND-B rats was 2.0 ± 0.7 × 105 at 6 weeks, slightly but significantly higher than that of C-B rats. Plasma levels of GOT and GPT as markers of hepatitis onset, however, were not elevated. At 24 weeks of age, MF in the WND-B rats was 5.3 ± 0.9 × 105, 2.4-times the C-B value (2.2 ± 0.7 × 105) and plasma levels of GOT (417 IU/liter) and GPT (317 IU/liter) were much higher. At 40 weeks of age, when the WND-B rats were in the chronic phase of hepatitis, MFs in the livers were almost the same as that at 24 weeks.

Mutational Spectra of the lacI DNA Sequence.

The DNA sequences of a total of 200 lacI mutants isolated from the livers of C-B rats (47 at 24 weeks and 52 at 40 weeks) and WND-B rats (49 at 24 weeks and 52 at 40 weeks) were analyzed, and 186 independent mutations (95 of C-B and 91 of WND) were detected. The mutational types and locations of all mutants are listed in Tables 2,3,4,5 , and a summary of mutational types is given in Tables 6 and 7. The majority of the recovered mutations in both genotypes were base substitutions (C-B, 81%; WND-B, 78%), giving rise to stop codons or amino acid substitutions (Tables 2, 3, 6, and 7). The others were all simple deletions or insertions of 1–358 bp (Tables 4 and 5). Because mutational types did not principally differ between 24 and 40 weeks in either C-B or WND-B rats (Tables 6 and 7), a comparison between C-B and WND-B was made for the total mutations at 24 and 40 weeks.

The most frequent mutations were G:C to A:T transitions in both strains with frequencies of 41% and 49% in C-B and WND-B, respectively. They were mostly present at CpG sites with frequencies of 62% and 87% of the total G:C to A:T mutations in C-B and WND-B, respectively (Tables 6 and 7), the difference being significant (P = 0.0164).

A:T to G:C transitions were observed with a significantly higher frequency in C-B (P = 0.0121). Further, it is worthy to note that mutations at the A:T site, including transitions and transversions, were significantly more prevalent in C-B than in WND-B, with frequencies of 24% versus 10%, respectively(P = 0.0184).

Total frequencies for the frameshifts (one or two bp), deletion (more than two bp), and insertions (more than two bp) were almost the same in C-B and WND-B rats, being 19% (18 of 95) and 22% (20 of 91) of the total, respectively, as shown in Tables 6 and 7. Frameshift mutations were more frequent in C-B (13 of 18; 72%) than in WND-B (6 of 20;30%). In contrast, only 5 (5%) deletion and insertion mutations ranging from 4 to 358 bp were found in C-B, but 14 (16%) were found in WND-B rats. Of these, one C-B but nine WND-B mutants involved >10 bp deletions. Thus, a tendency toward large deletion mutations was seen in WND-B rats, with the average size of 71 bp in WND-B, in contrast to 16 bp in C-B rats.

Mutational hot spots, defined as more than three mutations, were detected at nucleotide positions 92, 329, and 791 in C-B rats and 92,95, 131, 180, and 329 in WND-B rats, with totals of 10 and 18 mutations, respectively. All these sites were CpG, and 8 of 10 and 17 of 18 mutations in C-B rats and WND-B rats, respectively, were G:C to A:T transitions.

Insertion of 5′-CTGG-3′ was observed twice in C-B rats and once in a WND-B rat, at nucleotide positions 620–623 where a three-consecutive repeat of 5′-(CTGG)3-3′ exists. In contrast,three deletion mutations, with loss of one of the three repeats, were detected in WND-B rats but none in C-B. In the two strains of rats, 5 of 19 insertion and deletion mutations were at nucleotide number 620,indicating the 5′-CGT(CTGG)3 CAT-3′ to be a target in both C-B and WND rats.

Other characteristic mutations were also found: A mutation in C-B rats(plaque no. 665) had an ATGCG insertion resulting in a repeat of this sequence. Another mutation in WND-B rats (plaque no. 99113) was implicated with a palindrome structure composed of an inverted 6 bp separated by 45 bp, while 46 bp were deleted.

The present study demonstrated the MF in the liver of WND-B rats to be 1.5 times higher than that in the C-B rat, even before the onset of hepatitis at 6 weeks of age. At this age, the copper level in the WND-B rat liver was much higher, 65.3 μg/g wet tissue(n = 8; range, 27–95), than in the C-B case(15.8 μg/g wet tissue; n = 5; range,5.4–26.4 Thus, the higher MF in the WND-B rat could have been attributable to accumulation of copper, which is known to induce mutations by direct interaction with DNA or through production of ROS. The BrdUrd labeling index of LEC rats at 6 weeks of age is the same as that of the wild-type rat(24), suggesting that cell proliferation itself played no major role in the difference in MF. The MF ratio of WND-B:C-B was increased to 2.4 at 24 weeks, when hepatitis had developed in the WND-B rats, with high plasma GOT and GPT levels. Some Atp7b m/mrats in fact died of fulminant jaundice at around 21 weeks. At 24 weeks of age, the levels of copper in WND-B rats were highest, with an average of 200 μg/g (n = 7; range,113–275), in line with data for oxidative DNA damage (9, 10) and cell proliferation rate (2). Thus, the DNA lesions would be expected to be efficiently fixed as mutations. Among WND-B rats at 24 weeks of age, there was a positive correlation between the copper levels and MF (r = 0.398);however, no correlation between plasma GOT/GPT levels and MF(r = −0.231) was observed. At 40 weeks of age, the MF values in C-B and WND-B were the same as those at 24 weeks,and this lack of increase might be partly explained by the lower levels of copper [178 μg/g (n = 7; range,31–301)], DNA adducts (9, 10), and cell proliferation rate (2) at 24 weeks. All LEC rats surviving the acute phase of hepatitis develop HCCs. Thus, the increased MF occurring in the acute phase could play important roles in hepatocarcinogenesis,along with signal transduction induced by ROS, such as through the nuclear factor κB pathway (25).

Ratios of base substitution mutations did not basically differ between C-B and WND-B rats. However, some differences were observed in mutational types: mutations at A:T sites were significantly decreased,and G→A transitions at the CpG site were significantly increased in WND-B rats. Additionally, large deletions were observed at a high frequency in WND-B rats. Recently it was found that 2-OHdA is produced 70–80 times more efficiently in the nucleotide pools than on DNA. 2-OHdA is misinserted opposite dC to give G:C to A:T transitions in subsequent DNA replications (26). Our experimental results, showing a higher tendency for mutation of G:C to A:T in WND-B rats than in C-B rats, suggest 2-OHdA as a possible cause. The predominant base substitutions produced by incubation of single-stranded M13mp2DNA with Cu were C→T and G→T(27). Thus, involvement of direct interaction of copper with DNA in base substitution mutation cannot be ruled out. ROS produced by H2O2 or metals,including Fe2+, Cu2+, and Ni2+, in contrast, is reported to induce CC to TT mutations (27, 28); ROS produced by bleomycin is associated with single bp deletions at hot spots of 5′-GTC-3′ or 5′-GCC-3′ in CHO cells (29). However, no such bp substitutions or preferential sites for frameshift were observed here in either C-B or WND-B rats. The oxidative stress in this model system might be attributable to another type of ROS, which resembles spontaneously accumulated mutations during aging.

It has been reported that singlet oxygen contributes to strand breakage by lead acetate(Pb(CH3COO)2; Ref.30), and that cobaltous chloride(CoCl2) induces deletion mutations, specifically at direct repeat sequences in Escherichia coli(31). There were only two deletions at direct repeat sequences in C-B but four in WND-B rats, and one at an inverted repeat sequence in WND-B rats. Further, some mutation spectra of mutant plaques were not determined because their lacI gene fragment could not be amplified by PCR, suggesting that these plaques might include some large deletions.

In conclusion, the present results suggest that the increase of MF and changes in the mutational spectrum in WND-B rats are attributable to DNA damage induced by copper accumulation itself and/or associated oxidative stress. In addition, we hypothesize that the remarkable increase in MF in the LEC rat liver may play a crucial role in its hepatocarcinogenesis.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1

Supported by a Grant-in-Aid for Cancer Research from the Ministry of Health and Welfare of Japan, and by a grant from the Ministry of Education, Sciences, Sports and Culture, Japan.

3

The abbreviations used are: LEC,Long-Evans Cinnamon (rat); HCC, hepatocellular carcinoma; MF, mutant frequency; C-B rat, rat heterozygous for the WND gene (Atp7b w/m) with lacI gene; WND-B rat, rat homozygous for the WND gene (Atp7b m/m) with lacIgene; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; ROS, reactive oxygen species; GOT, glutamate-oxaroacetate transaminase; GPT,glutamate-pyruvate transaminase.

4

Unpublished data.

Table 1

MF in the livers of C-B and WND-B ratsa

Animal no.GOT (IU/liter)GPT (IU/liter)Mutant/Total plaquesMF (×10)
C-B (Atp7b w/m, lacI    
6 wk     
 51 92 50 1 /120,432 0.8 
 57 110 66 1 /110,598 0.9 
 92 106 52 2 /117,912 1.7 
 94 121 44 2 /127,824 1.6 
 97 102 48 2 /147,072 1.4 
 99 94 37 1 /102,528 1.0 
101 91 37 2 /126,592 1.6 
Mean 102 48  1.3 
SD 12 11  0.3 
24 wk     
 63 85 49 3 /116,004 2.6 
 71 87 34 12 /525,484 2.3 
 72 99 39 12 /540,784 2.2 
132 83 31 10 /383,479 2.6 
136 85 33 1 /233,332 0.4 
138 100 41 6 /203,680 2.9 
161 129 42 12 /550,175 2.2 
Mean 95 38  2.2 
SD 15  0.8 
40 wk     
 80 57 27 11 /480,883 2.3 
 91 72 33 7 /255,278 2.7 
106 66 36 17 /402,368 4.2 
108 95 56 1 /156,038 0.6 
109 79 36 3 /291,370 1.0 
112 64 31 9 /260,012 3.5 
113 64 31 10 /383,024 2.6 
Mean 71 36  2.4 
SD 12  1.2 
WND-B (Atp7b m/m, lacI    
6 wk     
 52 85 50 2 /124,824 1.6 
 53 94 51 3 /132,260 2.3 
 54 100 58 2 /136,680 1.5 
 55 102 66 3 /96,480 3.1 
 95 125 37 3 /132,352 2.3 
 96 99 37 1 /107,776 0.9 
100 103 44 3 /115,584 2.6 
Mean 101 49  2.0b 
SD 12 11  0.7 
24 wk     
  8 558 168 5 /110,550 4.5 
 60 501 1088 14 /352,752 4.0 
 61 161 173 18 /388,395 4.6 
 62 170 62 9 /137,304 6.6 
 65 138 119 12 /210,776 5.7 
 67 261 400 13 /220,238 5.9 
131 1131 212 7 /118,419 5.9 
Mean 417b 317b  5.3c 
SD 357 356  0.9 
40 wk     
107 313 849 12 /223,337 5.4 
111 251 288 8 /175,824 4.6 
114 189 22 7 /186,170 3.8 
144 115 98 9 /145,180 6.2 
145 152 103 10 /156,740 6.4 
146 174 183 7 /163,540 4.3 
148 116 46 10 /151,300 6.6 
Mean 187c 227  5.3b 
SD 67 267  1.0 
Animal no.GOT (IU/liter)GPT (IU/liter)Mutant/Total plaquesMF (×10)
C-B (Atp7b w/m, lacI    
6 wk     
 51 92 50 1 /120,432 0.8 
 57 110 66 1 /110,598 0.9 
 92 106 52 2 /117,912 1.7 
 94 121 44 2 /127,824 1.6 
 97 102 48 2 /147,072 1.4 
 99 94 37 1 /102,528 1.0 
101 91 37 2 /126,592 1.6 
Mean 102 48  1.3 
SD 12 11  0.3 
24 wk     
 63 85 49 3 /116,004 2.6 
 71 87 34 12 /525,484 2.3 
 72 99 39 12 /540,784 2.2 
132 83 31 10 /383,479 2.6 
136 85 33 1 /233,332 0.4 
138 100 41 6 /203,680 2.9 
161 129 42 12 /550,175 2.2 
Mean 95 38  2.2 
SD 15  0.8 
40 wk     
 80 57 27 11 /480,883 2.3 
 91 72 33 7 /255,278 2.7 
106 66 36 17 /402,368 4.2 
108 95 56 1 /156,038 0.6 
109 79 36 3 /291,370 1.0 
112 64 31 9 /260,012 3.5 
113 64 31 10 /383,024 2.6 
Mean 71 36  2.4 
SD 12  1.2 
WND-B (Atp7b m/m, lacI    
6 wk     
 52 85 50 2 /124,824 1.6 
 53 94 51 3 /132,260 2.3 
 54 100 58 2 /136,680 1.5 
 55 102 66 3 /96,480 3.1 
 95 125 37 3 /132,352 2.3 
 96 99 37 1 /107,776 0.9 
100 103 44 3 /115,584 2.6 
Mean 101 49  2.0b 
SD 12 11  0.7 
24 wk     
  8 558 168 5 /110,550 4.5 
 60 501 1088 14 /352,752 4.0 
 61 161 173 18 /388,395 4.6 
 62 170 62 9 /137,304 6.6 
 65 138 119 12 /210,776 5.7 
 67 261 400 13 /220,238 5.9 
131 1131 212 7 /118,419 5.9 
Mean 417b 317b  5.3c 
SD 357 356  0.9 
40 wk     
107 313 849 12 /223,337 5.4 
111 251 288 8 /175,824 4.6 
114 189 22 7 /186,170 3.8 
144 115 98 9 /145,180 6.2 
145 152 103 10 /156,740 6.4 
146 174 183 7 /163,540 4.3 
148 116 46 10 /151,300 6.6 
Mean 187c 227  5.3b 
SD 67 267  1.0 
a

Rats were sacrificed, and liver tissues and blood were isolated to determine MF in the lacI gene and plasma GOT/GPT, respectively.

b

Significantly different from MF for the corresponding Atp7bw/m genotype at P < 0.05 using the t test.

c

Significantly different from MF for the corresponding Atp7bw/m genotype at P < 0.001 using the t test.

Table 2

The type and location of base-substitutive mutations in C-B rats

Animal no.No. of plaquesNucleotide no.aWild formDetected formBase substitutionCodonAmino acid change
24 wk of ageb        
 63 9,926 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 63 9,922 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 63 9,967 791 ATG CGC GCC AGC C to A 255 Arg to Arg 
 71 991 56 GTC GCA GAG ACA G to A 10 Ala to Thr 
 71 992 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 71 682 150 GCG GCG ATG GAC to A 41 Ala to Glu 
 71 681 210 CAG TCG TTG TAC to A 61 Ser to Stop 
 71 703 287 CGC GCC GAT CCC G to C 87 Ala to Pro 
 71 993 400 ATC ATT AAC ATA T to A 124 Ile to Ile 
 71 9,923 707 TTT CAA CAA TAA C to T 227 Gln to Stop 
 71 9,969 896 ATC AAA CAG TAA A to T 290 Lys to Stop 
 72 9,977 77 TCT TAT CAG AAT T to A 17 Tyr to Tyr 
 72 9,940 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 72 684 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 72 9,924 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 72 9,972 468 TTA TTT CTT TAT to A 147 Phe to Tyr 
 72 9,927 719 ATG CAA ATG TAA C to T 231 Gln to Stop 
 72 9,970 891 ACC ACC ATC ATC to T 288 Thr to Ile 
 72 9,971 994 GTC TCA CTG TCC A to C 321 Ser to Ser 
132 9,976 221 ATT GGC GTT AGC G to A 65 Gly to Ser 
132 9,912 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
132 9,921 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
132 9,911 693 AGT GCC ATG GAC to A 222 Ala to Asp 
132 9,913 843 GTA GGA TAC GAG to A 272 Gly to Glu 
136 662 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
138 9,950 276 GCG ATT AAA AAT to A 83 Ile to Asn 
138 9,916 621 CGT CTG GCT CCT to C 198 Leu to Pro 
 9,948       
138 9,957 900 AAA CAG GAT CCA to C 291 Gln to Pro 
161 9,973 68 GCC GGT GTC TGT G to T 14 Gly to Cys 
161 636 83 CAG ACC GTT GCC A to G 19 Thr to Ala 
161 9,960 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
161 4,431 178 CCC AAC CGC AAT C to T 50 Asn to Asn 
161 633 285 TCT CGC GCC CCG to C 86 Arg to Pro 
161 9,965 296 CAA CTG GGT TTG C to T 90 Leu to Leu 
161 683 377 GCG CAA CGC TAA C to T 117 Gln to Stop 
161 383 CGC GTC AGT GGT to G 119 Val to Gly 
161 9,974 780 GCG CTG GGC CCT to C 251 Leu to Pro 
40 wk of agec        
 80 806 95 CGC GTG GTG ATG G to A 23 Val to Met 
 80 99,140 96 CGC GTG GTG GAT to C 23 Val to Glu 
 80 805 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 80 99,107 232 GCC ACC TCC ATC to T 68 Thr to Ile 
 80 99,123 346 GAA GCC TGT GCG C to G 106 Ala to Ala 
 80 99,120 525 GAC GGT ACG GAG to A 166 Gly to Asp 
 80 99,124 537 CTG GGC GTG GAG to A 170 Gly to Asp 
 80 99,126 896 ATC AAA CAG TAA A to T 290 Lys to Stop 
 91 912 83 CAG ACC GTT GCC A to G 19 Thr to Ala 
 91 916 87 ACC GTT TCC GCT to C 20 Val to Ala 
 91 915 196 CAA CTG GCG CTA G to A 56 Leu to Leu 
 91 915 197 CTG GCG GGC TCG G to T 57 Ala to Ser 
 91 912 270 GTC GCG GCG GTG C to T 81 Ala to Val 
106 99,104 54 GAT GTC GCA GCT to C Val to Ala 
106 1,063 75 GTC TCT TAT TTC to T 16 Ser to Phe 
 1,064       
 1,065       
106 1,066 93 TCC CGC GTG CAG to A 22 Arg to His 
106 101 95 CGC GTG GTG ATG G to A 23 Val to Met 
106 99,103 96 CGC GTG GTG GAT to A 23 Val to Glu 
106 99,141 201 GCG GGC AAA GAG to A 58 Gly to Asp 
106 102 228 GTT GCC ACC GAC to A 67 Ala to Asp 
106 99,145 468 TTA TTT CTT TCT to C 147 Phe to Ser 
106 1,062 530 ACG CGA CTG TGC to T 168 Arg to Stop 
106 99,142 791 ATG CGC GCC AGC C to A 255 Arg to Arg 
108 1,081 465 GCG TTA TTT TAT to A 146 Leu to Stop 
109 1,097 42 GTA ACG TTA ATC to T Thr to Met 
109 1,096 140 AAA GTG GAA ATG G to A 38 Val to Met 
112 1,125 87 ACC GTT TCC GCT to C 20 Val to Ala 
112 1,127 103 GTG AAC CAG AAA C to A 25 Asn to Lys 
112 1,122 381 CAA CGC GTC CAG to A 118 Arg to His 
112 99,102 537 CTG GGC GTG GAG to A 170 Gly to Asp 
112 1,126 659 ATT CAG CCG TAG C to T 211 Gln to Stop 
112 1,123 791 ATG CGC GCC TGC C to T 255 Arg to Cys 
112 1,121 792 ATG CGC GCC CAG to A 255 Arg to His 
 1,124       
113 1,131 30 AAT GTG AAA GCT to C Val to Ala 
113 1,138 38 CCA GTA ACG TTA G to T Val to Leu 
113 1,132 49 TTA TAC GAT TAA C to A Tyr to Stop 
113 99,131 81 TAT CAG ACC CGA to G 18 Gln to Arg 
113 99,133 201 GCG GGC AAA GAG to A 58 Gly to Asp 
113 1,137 298 CAA CTG GGT CTA G to A 90 Leu to Leu 
113 1,136 380 CAA CGC GTC TGC C to T 118 Arg to Cys 
Animal no.No. of plaquesNucleotide no.aWild formDetected formBase substitutionCodonAmino acid change
24 wk of ageb        
 63 9,926 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 63 9,922 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 63 9,967 791 ATG CGC GCC AGC C to A 255 Arg to Arg 
 71 991 56 GTC GCA GAG ACA G to A 10 Ala to Thr 
 71 992 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 71 682 150 GCG GCG ATG GAC to A 41 Ala to Glu 
 71 681 210 CAG TCG TTG TAC to A 61 Ser to Stop 
 71 703 287 CGC GCC GAT CCC G to C 87 Ala to Pro 
 71 993 400 ATC ATT AAC ATA T to A 124 Ile to Ile 
 71 9,923 707 TTT CAA CAA TAA C to T 227 Gln to Stop 
 71 9,969 896 ATC AAA CAG TAA A to T 290 Lys to Stop 
 72 9,977 77 TCT TAT CAG AAT T to A 17 Tyr to Tyr 
 72 9,940 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 72 684 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 72 9,924 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 72 9,972 468 TTA TTT CTT TAT to A 147 Phe to Tyr 
 72 9,927 719 ATG CAA ATG TAA C to T 231 Gln to Stop 
 72 9,970 891 ACC ACC ATC ATC to T 288 Thr to Ile 
 72 9,971 994 GTC TCA CTG TCC A to C 321 Ser to Ser 
132 9,976 221 ATT GGC GTT AGC G to A 65 Gly to Ser 
132 9,912 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
132 9,921 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
132 9,911 693 AGT GCC ATG GAC to A 222 Ala to Asp 
132 9,913 843 GTA GGA TAC GAG to A 272 Gly to Glu 
136 662 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
138 9,950 276 GCG ATT AAA AAT to A 83 Ile to Asn 
138 9,916 621 CGT CTG GCT CCT to C 198 Leu to Pro 
 9,948       
138 9,957 900 AAA CAG GAT CCA to C 291 Gln to Pro 
161 9,973 68 GCC GGT GTC TGT G to T 14 Gly to Cys 
161 636 83 CAG ACC GTT GCC A to G 19 Thr to Ala 
161 9,960 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
161 4,431 178 CCC AAC CGC AAT C to T 50 Asn to Asn 
161 633 285 TCT CGC GCC CCG to C 86 Arg to Pro 
161 9,965 296 CAA CTG GGT TTG C to T 90 Leu to Leu 
161 683 377 GCG CAA CGC TAA C to T 117 Gln to Stop 
161 383 CGC GTC AGT GGT to G 119 Val to Gly 
161 9,974 780 GCG CTG GGC CCT to C 251 Leu to Pro 
40 wk of agec        
 80 806 95 CGC GTG GTG ATG G to A 23 Val to Met 
 80 99,140 96 CGC GTG GTG GAT to C 23 Val to Glu 
 80 805 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 80 99,107 232 GCC ACC TCC ATC to T 68 Thr to Ile 
 80 99,123 346 GAA GCC TGT GCG C to G 106 Ala to Ala 
 80 99,120 525 GAC GGT ACG GAG to A 166 Gly to Asp 
 80 99,124 537 CTG GGC GTG GAG to A 170 Gly to Asp 
 80 99,126 896 ATC AAA CAG TAA A to T 290 Lys to Stop 
 91 912 83 CAG ACC GTT GCC A to G 19 Thr to Ala 
 91 916 87 ACC GTT TCC GCT to C 20 Val to Ala 
 91 915 196 CAA CTG GCG CTA G to A 56 Leu to Leu 
 91 915 197 CTG GCG GGC TCG G to T 57 Ala to Ser 
 91 912 270 GTC GCG GCG GTG C to T 81 Ala to Val 
106 99,104 54 GAT GTC GCA GCT to C Val to Ala 
106 1,063 75 GTC TCT TAT TTC to T 16 Ser to Phe 
 1,064       
 1,065       
106 1,066 93 TCC CGC GTG CAG to A 22 Arg to His 
106 101 95 CGC GTG GTG ATG G to A 23 Val to Met 
106 99,103 96 CGC GTG GTG GAT to A 23 Val to Glu 
106 99,141 201 GCG GGC AAA GAG to A 58 Gly to Asp 
106 102 228 GTT GCC ACC GAC to A 67 Ala to Asp 
106 99,145 468 TTA TTT CTT TCT to C 147 Phe to Ser 
106 1,062 530 ACG CGA CTG TGC to T 168 Arg to Stop 
106 99,142 791 ATG CGC GCC AGC C to A 255 Arg to Arg 
108 1,081 465 GCG TTA TTT TAT to A 146 Leu to Stop 
109 1,097 42 GTA ACG TTA ATC to T Thr to Met 
109 1,096 140 AAA GTG GAA ATG G to A 38 Val to Met 
112 1,125 87 ACC GTT TCC GCT to C 20 Val to Ala 
112 1,127 103 GTG AAC CAG AAA C to A 25 Asn to Lys 
112 1,122 381 CAA CGC GTC CAG to A 118 Arg to His 
112 99,102 537 CTG GGC GTG GAG to A 170 Gly to Asp 
112 1,126 659 ATT CAG CCG TAG C to T 211 Gln to Stop 
112 1,123 791 ATG CGC GCC TGC C to T 255 Arg to Cys 
112 1,121 792 ATG CGC GCC CAG to A 255 Arg to His 
 1,124       
113 1,131 30 AAT GTG AAA GCT to C Val to Ala 
113 1,138 38 CCA GTA ACG TTA G to T Val to Leu 
113 1,132 49 TTA TAC GAT TAA C to A Tyr to Stop 
113 99,131 81 TAT CAG ACC CGA to G 18 Gln to Arg 
113 99,133 201 GCG GGC AAA GAG to A 58 Gly to Asp 
113 1,137 298 CAA CTG GGT CTA G to A 90 Leu to Leu 
113 1,136 380 CAA CGC GTC TGC C to T 118 Arg to Cys 
a

Location of lacIgene.

b

Total: 37 mutations/38 mutants.

c

Total: 40 mutations/43 mutants.

Table 3

The type and location of base-substitutive mutations in WND-B rats

Animal no.No. of plaquesNucleotide no.aWild formDetected formBase substitutionCodonAmino acid change
24 wk of ageb        
  8 85 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
  8 83 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 60 1,452 42 GTA ACG TTA ATC to T Thr to Met 
 60 608 87 ACC GTT TCC GGT to G 20 Val to Gly 
 60 6,010 150 GCG GCG ATG GAC to A 41 Ala to Glu 
 60 9,951 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
 60 602 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 61 9,945 56 GTC GCA GAG ACA G to A 10 Ala to Thr 
 61 9,937 75 GTC TCT TAT TTC to T 16 Ser to Phe 
 61 9,944 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 61 612 129 AAA ACG CGG AAC to A 34 Thr to Lys 
 61 9,936 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 9,942       
 61 616 783 CTG GGC GCA GAG to A 252 Gly to Asp 
 62 623 82 TAT CAG ACC CAC G to C 18 Gln to His 
 62 624 95 CGC GTG GTG ATG G to A 23 Val to Met 
 62 6,210 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 62 621 180 AAC CGC GTG CAG to A 51 Arg to His 
 62 628 273 GCG GCG ATT GAC to A 82 Ala to Glu 
 65 652 95 CGC GTG GTG ATG G to A 23 Val to Met 
 65 4,486 131 ACG CGG GAA TGG C to T 35 Arg to Ser 
 65 4,482 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
 65 4,483 332 CGA AGC GGC AGT C to T 102 Ser to Ser 
 65 4,488 375 CTC GCG CAA GTC to T 119 Ala to Val 
 65 4,484 530 ACG CGA CTG TGA C to T 168 Arg to Stop 
 4,487       
 67 673 79 TCT TAT CAG TAG T to G 17 Tyr to Stop 
 67 995 87 ACC GTT TCC GGT to C 20 Val to Ala 
 67 671 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
 67 998 180 AAC CGC GTG CAG to A 51 Arg to His 
 67 9,910 185 GTG GCA CAA CCA G to C 53 Ala to Pro 
 67 9,910 242 CTG GCC CTG CCC G to C 72 Ala to Pro 
 67 676 270 GTC GCG GCG GTC to T 81 Ala to Val 
 67 672 308 AGC GTG GTG ATG G to A 94 Val to Met 
 67 996 780 GCG CTG GGC CCT to C 251 Leu to Gln 
131 1,314 42 GTA ACG TTA ATC to T Thr to Met 
131 1,312 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
131 1,312 346 GAA GCC TGT GCG C to G 106 Ala to Ala 
40 wk of agec        
107 99,125 53 GAT GTC GCA TTC G to T Val to Phe 
107 99,110 96 CGC GTG GTG GAT to A 23 Val to Glu 
107 99,112 103 GTG AAC CAG AAG C to G 25 Asn to Lys 
107 1,073 104 AAC CAG GCC TAG C to T 26 Gln to Stop 
107 1,072 162 GAG CTG AAT CGT to G 45 Leu to Arg 
107 1,071 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
111 1,117 51 TAC GAT GTC GCA to C Asp to Ala 
111 1,117 66 TAT GCC GGT GTC to T 13 Ala to Val 
111 1,113 80 TAT CAG ACC TAG C to T 18 Gln to Stop 
111 1,113 95 CGC GTG GTG ATG G to A 23 Val to Met 
111 1,116 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
111 1,112 179 AAC CGC GTG TGC C to T 51 Arg to Cys 
111 99,118 222 ATT GGC GTT GAG to A 65 Gly to Asp 
114 1,144 188 GCA CAA CAA AAA C to A 54 Gln to Lys 
114 1,145 702 TCC GGT TTT GTG to T 225 Gly to Val 
114 1,147 842 GTG GGA TAC AGA G to A 272 Gly to Arg 
114 1,146 918 CTG GGG CAA GAG to A 297 Gly to Glu 
144 1,441 180 AAC CGC GTG CAG to A 51 Arg to His 
144 1,448 579 GCG CTG TTA CGT to G 184 Leu to Arg 
144 1,449 944 CTG CAA CTC TAA C to T 306 Gln to Stop 
145 1,451 188 GCA CAA CAA GAA C to G 54 Gln to Glu 
145 1,459 270 GTC GCG GCG GTC to T 81 Ala to Val 
145 1,453 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 1,456       
 1,457       
 1,458       
 14,510       
 14,511       
146 1,461 30 AAT GTG AAA GCT to C Val to Ala 
146 1,465 185 GTG GCA CAA TCA G to T 53 Ala to Ser 
146 1,466 198 CTG GCG GGC GTC to T 57 Ala to Val 
146 1,463 381 CAA CGC GTC CAG to A 118 Arg to His 
146 1,467 1,005 AAA AGA AAA AAG to A 326 Arg to Lys 
148 1,487 84 CAG ACC GTT ATC to T 19 Thr to Ile 
148 1,481 92 TCC CGC GTG AGC C to A 22 Arg to Ser 
 1,483       
148 1,486 93 TCC CGC GTG CAG to A 22 Arg to His 
148 1,484 176 CCC AAC CGC TAC A to T 50 Asn to Try 
148 1,482 542 GTG GAG CAT TAG G to T 172 Glu to Stop 
148 1,485 569 CAG CAA ATC TAA C to T 181 Gln to Stop 
148 1,488 681 GAA GGC GAC GAG to A 218 Gly to Asp 
Animal no.No. of plaquesNucleotide no.aWild formDetected formBase substitutionCodonAmino acid change
24 wk of ageb        
  8 85 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
  8 83 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 60 1,452 42 GTA ACG TTA ATC to T Thr to Met 
 60 608 87 ACC GTT TCC GGT to G 20 Val to Gly 
 60 6,010 150 GCG GCG ATG GAC to A 41 Ala to Glu 
 60 9,951 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
 60 602 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 61 9,945 56 GTC GCA GAG ACA G to A 10 Ala to Thr 
 61 9,937 75 GTC TCT TAT TTC to T 16 Ser to Phe 
 61 9,944 92 TCC CGC GTG TGC C to T 22 Arg to Cys 
 61 612 129 AAA ACG CGG AAC to A 34 Thr to Lys 
 61 9,936 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 9,942       
 61 616 783 CTG GGC GCA GAG to A 252 Gly to Asp 
 62 623 82 TAT CAG ACC CAC G to C 18 Gln to His 
 62 624 95 CGC GTG GTG ATG G to A 23 Val to Met 
 62 6,210 178 CCC AAC CGC AAA C to A 50 Asn to Lys 
 62 621 180 AAC CGC GTG CAG to A 51 Arg to His 
 62 628 273 GCG GCG ATT GAC to A 82 Ala to Glu 
 65 652 95 CGC GTG GTG ATG G to A 23 Val to Met 
 65 4,486 131 ACG CGG GAA TGG C to T 35 Arg to Ser 
 65 4,482 269 GTC GCG GCG ACG G to A 81 Ala to Thr 
 65 4,483 332 CGA AGC GGC AGT C to T 102 Ser to Ser 
 65 4,488 375 CTC GCG CAA GTC to T 119 Ala to Val 
 65 4,484 530 ACG CGA CTG TGA C to T 168 Arg to Stop 
 4,487       
 67 673 79 TCT TAT CAG TAG T to G 17 Tyr to Stop 
 67 995 87 ACC GTT TCC GGT to C 20 Val to Ala 
 67 671 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
 67 998 180 AAC CGC GTG CAG to A 51 Arg to His 
 67 9,910 185 GTG GCA CAA CCA G to C 53 Ala to Pro 
 67 9,910 242 CTG GCC CTG CCC G to C 72 Ala to Pro 
 67 676 270 GTC GCG GCG GTC to T 81 Ala to Val 
 67 672 308 AGC GTG GTG ATG G to A 94 Val to Met 
 67 996 780 GCG CTG GGC CCT to C 251 Leu to Gln 
131 1,314 42 GTA ACG TTA ATC to T Thr to Met 
131 1,312 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
131 1,312 346 GAA GCC TGT GCG C to G 106 Ala to Ala 
40 wk of agec        
107 99,125 53 GAT GTC GCA TTC G to T Val to Phe 
107 99,110 96 CGC GTG GTG GAT to A 23 Val to Glu 
107 99,112 103 GTG AAC CAG AAG C to G 25 Asn to Lys 
107 1,073 104 AAC CAG GCC TAG C to T 26 Gln to Stop 
107 1,072 162 GAG CTG AAT CGT to G 45 Leu to Arg 
107 1,071 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
111 1,117 51 TAC GAT GTC GCA to C Asp to Ala 
111 1,117 66 TAT GCC GGT GTC to T 13 Ala to Val 
111 1,113 80 TAT CAG ACC TAG C to T 18 Gln to Stop 
111 1,113 95 CGC GTG GTG ATG G to A 23 Val to Met 
111 1,116 131 ACG CGG GAA TGG C to T 35 Arg to Trp 
111 1,112 179 AAC CGC GTG TGC C to T 51 Arg to Cys 
111 99,118 222 ATT GGC GTT GAG to A 65 Gly to Asp 
114 1,144 188 GCA CAA CAA AAA C to A 54 Gln to Lys 
114 1,145 702 TCC GGT TTT GTG to T 225 Gly to Val 
114 1,147 842 GTG GGA TAC AGA G to A 272 Gly to Arg 
114 1,146 918 CTG GGG CAA GAG to A 297 Gly to Glu 
144 1,441 180 AAC CGC GTG CAG to A 51 Arg to His 
144 1,448 579 GCG CTG TTA CGT to G 184 Leu to Arg 
144 1,449 944 CTG CAA CTC TAA C to T 306 Gln to Stop 
145 1,451 188 GCA CAA CAA GAA C to G 54 Gln to Glu 
145 1,459 270 GTC GCG GCG GTC to T 81 Ala to Val 
145 1,453 329 GAA CGA AGC TGA C to T 101 Arg to Stop 
 1,456       
 1,457       
 1,458       
 14,510       
 14,511       
146 1,461 30 AAT GTG AAA GCT to C Val to Ala 
146 1,465 185 GTG GCA CAA TCA G to T 53 Ala to Ser 
146 1,466 198 CTG GCG GGC GTC to T 57 Ala to Val 
146 1,463 381 CAA CGC GTC CAG to A 118 Arg to His 
146 1,467 1,005 AAA AGA AAA AAG to A 326 Arg to Lys 
148 1,487 84 CAG ACC GTT ATC to T 19 Thr to Ile 
148 1,481 92 TCC CGC GTG AGC C to A 22 Arg to Ser 
 1,483       
148 1,486 93 TCC CGC GTG CAG to A 22 Arg to His 
148 1,484 176 CCC AAC CGC TAC A to T 50 Asn to Try 
148 1,482 542 GTG GAG CAT TAG G to T 172 Glu to Stop 
148 1,485 569 CAG CAA ATC TAA C to T 181 Gln to Stop 
148 1,488 681 GAA GGC GAC GAG to A 218 Gly to Asp 
a

Location of lacIgene.

b

Total: 36 mutations/38 mutants.

c

Total: 35 mutations/41 mutants.

Table 4

The type and location of mutations other than base substitutions in C-B ratsa

Animal no.No. of plaquesNucleotide no.Wild formDetected formDeletion or insertionMutation typeRemarks
24 wk of age        
 63 9,968 670 GCG GAA CGG GCG AAC GG 1-bp deletion  
 71 711 220–224 ATT GGC GTT GCC ATT TGC CAC TGGCG 5-bp deletion Direct repeat 
 71 993 401 ATT AAC TAT ATT AAA CTA T 1-bp insertion  
 72 9,914 620–623 CGT (CTGG)3 CAT CGT (CTGG)4CAT CTGG 4-bp insertion Gain of repeat 
132 665 158–163 ATG GCG GAG G (ATG GCG)2GAG ATGGCG 6-bp insertion Gain of repeat 
132 9,919 199 GCG GGC AAA GCG GCA AA 1-bp deletion  
138 9,950 40 CCA GTA ACG CCA GTG AAC G 1-bp insertion  
161 9,939 497 ATC AAC AGT ATC ACA GT 1-bp deletion  
161 4,433 620–623 CGT (CTGG)3CAT CGT (CTGG)4 CAT CTGG 4-bp insertion Gain of repeat 
Total: 9 mutations/9 mutants        
40 wk of age        
 80 99,139 389 AGT GGG CTG AGT GGC TG 1-bp deletion  
 80 99,134 519 CAT GAA GAC CAT GAA AGA C 1-bp insertion  
 91 99,128 40 CCA GTA ACG CCA GTG AAC G 1-bp insertion  
106 99,146 440 GAA GCT GCC GAA CTG CC 1-bp insertion  
106 99,143 632–693 TGG CAT...GCC ATG TGG CAT GTC CAT...GC 62-bp deletion Direct repeat 
106 99,105 1,006 AAA AGA AAA AAA ACG AAA A 1-bp deletion  
106 99,144 1,055 TTG GCC GAT TTG GTC CGA T 1-bp deletion  
109 99,127 209 CAG TCG TTG CAG CGT TG 1-bp deletion  
113 99,132 1,013 ACC ACC CTG ACC CCC TG 1-bp deletion  
Total: 9 mutations/9 mutants        
Animal no.No. of plaquesNucleotide no.Wild formDetected formDeletion or insertionMutation typeRemarks
24 wk of age        
 63 9,968 670 GCG GAA CGG GCG AAC GG 1-bp deletion  
 71 711 220–224 ATT GGC GTT GCC ATT TGC CAC TGGCG 5-bp deletion Direct repeat 
 71 993 401 ATT AAC TAT ATT AAA CTA T 1-bp insertion  
 72 9,914 620–623 CGT (CTGG)3 CAT CGT (CTGG)4CAT CTGG 4-bp insertion Gain of repeat 
132 665 158–163 ATG GCG GAG G (ATG GCG)2GAG ATGGCG 6-bp insertion Gain of repeat 
132 9,919 199 GCG GGC AAA GCG GCA AA 1-bp deletion  
138 9,950 40 CCA GTA ACG CCA GTG AAC G 1-bp insertion  
161 9,939 497 ATC AAC AGT ATC ACA GT 1-bp deletion  
161 4,433 620–623 CGT (CTGG)3CAT CGT (CTGG)4 CAT CTGG 4-bp insertion Gain of repeat 
Total: 9 mutations/9 mutants        
40 wk of age        
 80 99,139 389 AGT GGG CTG AGT GGC TG 1-bp deletion  
 80 99,134 519 CAT GAA GAC CAT GAA AGA C 1-bp insertion  
 91 99,128 40 CCA GTA ACG CCA GTG AAC G 1-bp insertion  
106 99,146 440 GAA GCT GCC GAA CTG CC 1-bp insertion  
106 99,143 632–693 TGG CAT...GCC ATG TGG CAT GTC CAT...GC 62-bp deletion Direct repeat 
106 99,105 1,006 AAA AGA AAA AAA ACG AAA A 1-bp deletion  
106 99,144 1,055 TTG GCC GAT TTG GTC CGA T 1-bp deletion  
109 99,127 209 CAG TCG TTG CAG CGT TG 1-bp deletion  
113 99,132 1,013 ACC ACC CTG ACC CCC TG 1-bp deletion  
Total: 9 mutations/9 mutants        
a

Deleted and inserted bases are underlined in the wild form and in the detected form, respectively. Bold letters indicate direct repeat sequences.

Table 5

The type and location of mutations other than base substitutions in WND-B ratsa

Animal no.No. of plaquesNucleotide no.Wild formDetected formDeletion or insertionMutation typeRemarks
24 wk of age        
 8 85 182–204 CGC GTG...AAA CAG CGC ACA G GTG...AA 23-bp deletion  
 60 642 67–424 TAT GCC GGT....GAT GCC ATT TAT GCG CCA TT C GGT...GAT 358-bp deletion Direct repeat 
 60 934/938 620–623 CGT (CTGG)3 CAT CGT (CTGG)2 CAT CTGG 4-bp deletion Loss of repeat 
 61 617 350–438 CC TGT AAA...GAA GCT GCC CC TGT AGC TGC C AAA...GA 89-bp deletion Direct repeat 
 61 613 620–623 CGT (CTGG)3 CAT CGT (CTGG)4 CAT CTGG 4-bp insertion Gain of repeat 
 61 943 881–1,023 CCG CCG...CCC AAT CCG CAA T CCG...CC 143-bp deletion Loss of repeat 
 65 4,481 445–470 GCC TGC...TTT CTT GCT TGA T C TGC...TTT C 26-bp deletion  
 65 4,485 620–623 CGT (CTGG)3 CAT CGT (CTGG)2 CAT CTGG 4-bp deletion Loss of repeat 
 67 999 359–384 CG GCG GTG...GTC AGT GG GCG CAG T GTG...GT 26-bp deletion Direct repeat 
131 1,311 901 CAG GAT TTT CAG ATT TT 1-bp deletion  
Total: 10 mutations/11 mutants        
40 wk of age        
107 99,116 635–711 CATAAA TCAA ACC CAT AAC C AAA...CA 77-bp deletion Direct repeat 
107 99,111 782–789 CTG GGC GCA ATG CGC CTG GCG C GGC GCA AT 8-bp deletion Direct repeat 
107 99,113 914–959 CTG CTG...CAG GCG CTG AGG CG CTG...C 46-bp deletion Inverted repeat 
111 1,111 250 CAC GCG CCG CAC GCC G CG 2-bp deletion Loss of repeat 
114 1,148 139–188 AAAGCA CAA CAA AAA ACA A A...GCA C 50-bp deletion  
114 99,122 1,113 GCG CAA GAC GCA A 1-bp insertion  
144 1,444 47–190 TTA TACCAA CAA TTA CAA TAC...CAA 144-bp deletion  
144 1,443/1,447 860 GAA GAC AGC GAA ACA GC 1-bp deletion  
146 1,464 1,006 AGA AAA ACC AGA AAA CC 1-bp deletion  
148 1,481 731 AAT GAG GGC AAT AGG GC 1-bp deletion  
Total: 10 mutations/11 mutants        
Animal no.No. of plaquesNucleotide no.Wild formDetected formDeletion or insertionMutation typeRemarks
24 wk of age        
 8 85 182–204 CGC GTG...AAA CAG CGC ACA G GTG...AA 23-bp deletion  
 60 642 67–424 TAT GCC GGT....GAT GCC ATT TAT GCG CCA TT C GGT...GAT 358-bp deletion Direct repeat 
 60 934/938 620–623 CGT (CTGG)3 CAT CGT (CTGG)2 CAT CTGG 4-bp deletion Loss of repeat 
 61 617 350–438 CC TGT AAA...GAA GCT GCC CC TGT AGC TGC C AAA...GA 89-bp deletion Direct repeat 
 61 613 620–623 CGT (CTGG)3 CAT CGT (CTGG)4 CAT CTGG 4-bp insertion Gain of repeat 
 61 943 881–1,023 CCG CCG...CCC AAT CCG CAA T CCG...CC 143-bp deletion Loss of repeat 
 65 4,481 445–470 GCC TGC...TTT CTT GCT TGA T C TGC...TTT C 26-bp deletion  
 65 4,485 620–623 CGT (CTGG)3 CAT CGT (CTGG)2 CAT CTGG 4-bp deletion Loss of repeat 
 67 999 359–384 CG GCG GTG...GTC AGT GG GCG CAG T GTG...GT 26-bp deletion Direct repeat 
131 1,311 901 CAG GAT TTT CAG ATT TT 1-bp deletion  
Total: 10 mutations/11 mutants        
40 wk of age        
107 99,116 635–711 CATAAA TCAA ACC CAT AAC C AAA...CA 77-bp deletion Direct repeat 
107 99,111 782–789 CTG GGC GCA ATG CGC CTG GCG C GGC GCA AT 8-bp deletion Direct repeat 
107 99,113 914–959 CTG CTG...CAG GCG CTG AGG CG CTG...C 46-bp deletion Inverted repeat 
111 1,111 250 CAC GCG CCG CAC GCC G CG 2-bp deletion Loss of repeat 
114 1,148 139–188 AAAGCA CAA CAA AAA ACA A A...GCA C 50-bp deletion  
114 99,122 1,113 GCG CAA GAC GCA A 1-bp insertion  
144 1,444 47–190 TTA TACCAA CAA TTA CAA TAC...CAA 144-bp deletion  
144 1,443/1,447 860 GAA GAC AGC GAA ACA GC 1-bp deletion  
146 1,464 1,006 AGA AAA ACC AGA AAA CC 1-bp deletion  
148 1,481 731 AAT GAG GGC AAT AGG GC 1-bp deletion  
Total: 10 mutations/11 mutants        
a

Deleted and inserted bases are underlined in the wild form and in the detected form, respectively. Bold and italic letters indicate direct and inverted repeat sequences,respectively.

Table 6

Types of lacI mutations in C-B rat livers

Mutational type24 wk40 wkTotal
No. of mutationsCpG (%)No. of mutationsCpG (%)No. of mutationsCpG (%)
Transition       
G C to A 18 (39) 10 (56) 21 (43) 14 (67) 39 (41) 24 (62) 
A T to G 3 (7)  8 (16)  11 (12)  
Transversion       
G C to T 6 (13)  7 (14)  13 (14)  
G C to C 2 (4)  1 (2)  3 (3)  
A T to T 5 (11)  3 (6)  8 (8)  
A T to C 3 (7)  0 (0)  3 (3)  
Others       
Frameshifta 5 (11)  8 (16)  13 (14)  
Deletion 1 (2)  1 (2)  2 (2)  
Insertion 3 (7)  0 (0)  3 (3)  
Total mutations 46 (100)  49 (100)  95 (100)  
Mutational type24 wk40 wkTotal
No. of mutationsCpG (%)No. of mutationsCpG (%)No. of mutationsCpG (%)
Transition       
G C to A 18 (39) 10 (56) 21 (43) 14 (67) 39 (41) 24 (62) 
A T to G 3 (7)  8 (16)  11 (12)  
Transversion       
G C to T 6 (13)  7 (14)  13 (14)  
G C to C 2 (4)  1 (2)  3 (3)  
A T to T 5 (11)  3 (6)  8 (8)  
A T to C 3 (7)  0 (0)  3 (3)  
Others       
Frameshifta 5 (11)  8 (16)  13 (14)  
Deletion 1 (2)  1 (2)  2 (2)  
Insertion 3 (7)  0 (0)  3 (3)  
Total mutations 46 (100)  49 (100)  95 (100)  
a

Frameshift mutations include one or two bp deletions or insertions.

Table 7

Types of lacI mutations in WND-B rat liversa

Mutational type24 wk40 wkTotal
No. of mutationsCpG (%)No. of mutationsCpG (%)No. of mutationsCpG (%)
Transition       
G C to A 24 (51) 24 (100) 21 (47) 15 (71) 45 (49) 39 (87) 
P values  0.0012  >0.9999   0.0164 
A T to G 1 (2)  1 (2)  2 (2)  
P values 0.3066  0.0203  0.0121  
Transversion       
G C to T 4 (9)  6 (13)  10 (11)  
G C to C 4 (9)  2 (4)  6 (7)  
A T to T 1 (2)  2 (4)  3 (3)  
A T to C 2 (4)  3 (7)  5 (5)  
Others       
Frameshiftb 1 (2)  5 (11)  6 (6)  
Deletion 8 (17)  5 (11)  13 (15)  
P values 0.0255  0.0723  0.03  
Insertion 1 (2)  0 (0)  1 (1)  
Total mutations 46 (100)  45 (100)  91 (100)  
Mutational type24 wk40 wkTotal
No. of mutationsCpG (%)No. of mutationsCpG (%)No. of mutationsCpG (%)
Transition       
G C to A 24 (51) 24 (100) 21 (47) 15 (71) 45 (49) 39 (87) 
P values  0.0012  >0.9999   0.0164 
A T to G 1 (2)  1 (2)  2 (2)  
P values 0.3066  0.0203  0.0121  
Transversion       
G C to T 4 (9)  6 (13)  10 (11)  
G C to C 4 (9)  2 (4)  6 (7)  
A T to T 1 (2)  2 (4)  3 (3)  
A T to C 2 (4)  3 (7)  5 (5)  
Others       
Frameshiftb 1 (2)  5 (11)  6 (6)  
Deletion 8 (17)  5 (11)  13 (15)  
P values 0.0255  0.0723  0.03  
Insertion 1 (2)  0 (0)  1 (1)  
Total mutations 46 (100)  45 (100)  91 (100)  
a

Differences of mutations between C-B and WND-B were analyzed by the χ2 test using Statview version 4.5.

b

Frameshift mutations include one or two bp deletions or insertions.

We thank Dr. Michihiro C. Yoshida of Hokkaido University for providing rWDF41R30; Drs. Hitoshi Nakagama and Toshikazu Ushijima(National Cancer Center Research Institute) for helpful discussions;and Hiromi Takanaga and Naoko Tetsura (National Institute for Environmental Studies) for support in performing the experiment.

1
Sasaki M., Yoshida M. C., Kagami K., Takeichi N., Kobayashi H., Dempo K., Mori M. Spontaneous hepatitis in an inbred strain of Long-Evans rats.
Rat News Lett.
,
14
:
4
-6,  
1985
.
2
Yoshida M. C., Masuda R., Sasaki M., Takeichi N., Kobayashi H., Dempo K., Mori M. New mutation causing hereditary hepatitis in the laboratory rat.
J. Hered.
,
78
:
361
-365,  
1987
.
3
Li Y., Togashi Y., Sato S., Emoto T., Kang J. H., Takeichi N., Kobayashi H. Spontaneous hepatic copper accumulation in Long-Evans Cinnamon rats with hereditary hepatitis: a model of Wilson’s disease.
J. Clin Invest.
,
87
:
1858
-1861,  
1991
.
4
Wu J., Forbes J. R., Chen H. S., Cox D. W. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene.
Nat. Genet.
,
7
:
541
-545,  
1994
.
5
Sone H., Maeda M., Gotoh M., Wakabayashi K., Ono T., Yoshida M. C., Takeichi M., Mori M., Hirohashi S., Sugimura T., Nagao M. Genetic linkage between copper accumulation and hepatitis/hepatoma development in LEC rats.
Mol. Carcinog.
,
5
:
199
-204,  
1992
.
6
Ono T., Takada S., Yoshida M. C. The WD gene for Wilson Disease links to the hepatitis of LEC rats.
Jpn. J. Cancer Res.
,
85
:
771
-774,  
1994
.
7
Jong-Hon K., Togashi Y., Kasai H., Hosokawa M., Takeichi N. Prevention of spontaneous hepatocellular carcinoma in Long-Evans Cinnamon rats with hereditary hepatitis by the administration of d-penicillamine.
Hepatology
,
18
:
614
-620,  
1993
.
8
Sone H., Maeda M., Wakabayashi K., Takeichi N., Mori M., Sugimura T., Nagao M. Inhibition of hereditary hepatitis and liver tumor development in Long-Evans Cinnamon rats, by a copper chelating agent, trientine dihydrochloride.
Hepatology
,
23
:
764
-770,  
1996
.
9
Yamamoto F., Kasai H., Togashi Y., Takeichi N., Hori T., Nishimura S. Elevated level of 8-hydroxydeoxyguanosine in DNA of liver, kidneys, and brain of Long-Evans Cinnamon rats.
Jpn. J. Cancer Res.
,
84
:
508
-511,  
1993
.
10
Nair J., Sone H., Nagao M., Barbin A., Bartsch H. Copper-dependent formation of miscoding etheno-DNA adducts in the liver of Long-Evans Cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma.
Cancer Res.
,
56
:
1267
-1271,  
1996
.
11
Yamamoto, Y., Sone, Hideko., Yamashita, S., Nagata, Y., Niikawa, H., Hara, K., and Nagao, M. Oxidative stress in LEC rats evaluated by plasma antioxidants and free fatty acids. Cancer Res., 10: 129–134, 1997.
12
El-Ghissassi F., Barbin A., Nair J., Bartsch H. 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by lipid peroxidation products and nucleic acid bases.
Chem. Res. Toxicol.
,
8
:
273
-283,  
1995
.
13
Nair J., Barbin A., Velic I., Bartsch H. Etheno DNA-base adducts from endogenous reactive species.
Mutat. Res.
,
424
:
59
-69,  
1999
.
14
Tkeshelashvili L. K., McBride T., Spence K., Loeb L. A. Mutation spectrum of copper-induced DNA damage.
J. Biol. Chem.
,
266
:
6401
-6406,  
1991
.
15
Nackerdien Z., Rao G., Cacciuttolo M. A., Gajewski E., Izdaroglu M. Chemical nature of DNA-protein cross-links produced in mammalian chromatin by hydrogen peroxide in the presence of iron or copper ions.
Biochemistry
,
30
:
4873
-4879,  
1991
.
16
Wolf H. K., Michalopoulos G. K. Hepatocyte regeneration in acute fulminant and nonfulminant hepatitis: a study of proliferating cell nuclear antigen expression.
Hepatology
,
15
:
707
-713,  
1992
.
17
Cheng K. C., Cahill D. S., Kasai H., Nishimura S., Loeb L. A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G: T and A:C substitutions.
J. Biol. Chem.
,
267
:
166
-172,  
1992
.
18
Pandya G. A., Moriya M. 1,N6-ethenodeoxyadenosine, a DNA adduct highly mutagenic in mammalian cells.
Biochemistry
,
35
:
11487
-11492,  
1996
.
19
Palejwala V. A., Rzepka R. W., Simha D., Humayun M. Z. Quantitative multiplex sequence analysis of mutational hot spots. Frequency and specificity of mutations induced by a site-specific ethenocytosine in M13 viral DNA.
Biochemistry
,
32
:
4105
-4111,  
1993
.
20
Kohler S. W., Provost G. S., Fieck A., Kretz P. L., Bullock W. O., Sorge J. A., Putman D. L., Short J. M. Spectra of spontaneous and mutagen-induced mutations in the lacI gene in transgenic mice.
Proc. Natl. Acad. Sci. USA
,
88
:
7958
-7962,  
1991
.
21
Ushijima T., Hosoya Y., Suzuki T., Sofuni T., Sugimura T., Nagao M. A rapid method for detection of mutations in the lacI gene using PCR-single strand conformation polymorphism analysis: demonstration of its high sensitivity.
Mutat. Res.
,
334
:
283
-292,  
1995
.
22
Davies R., Oreffo V. I., Martin E. A., Festing M. F., White I. N., Smith L. L., Styles J. A. Tamoxifen causes gene mutations in the livers of lambda/lacI transgenic rats.
Cancer Res.
,
57
:
1288
-1293,  
1997
.
23
Dycaico M. J., Stuart G. R., Tobal G. M., de Boer J. G., Glickman B. W., Provost G. S. Species-specific differences in hepatic mutant frequency and mutational spectrum among lambda/lacI transgenic rats and mice following exposure to aflatoxin B1.
Carcinogenesis (Lond.)
,
17
:
2347
-2356,  
1996
.
24
Fujimoto Y., Oyamada M., Hattori A., Takahashi H., Sawaki M., Dempo K., Mori M., Nagao M. Accumulation of abnormally high ploid nuclei in the liver of LEC rats developing spontaneous hepatitis.
Jpn. J. Cancer Res.
,
80
:
45
-50,  
1989
.
25
Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.
Crit. Rev. Biochem. Mol. Biol.
,
30
:
445
-600,  
1995
.
26
Kamiya H., Kasai H. Effect of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine.
FEBS Lett.
,
391
:
113
-116,  
1996
.
27
Reid T. M., Feig D. I., Loeb L. A. Mutagenesis by metal-induced oxygen radicals.
Environ. Health Perspect.
,
102(Suppl.3)
:
57
-61,  
1994
.
28
Newcomb T. G., Allen K. J., Tkeshelashvili L., Loeb L. A. Detection of tandem CC to TT mutations induced by oxygen radicals using mutation-specific PCR.
Mutat. Res.
,
427
:
21
-30,  
1999
.
29
An J., Trieff N. M., Hsie A. W. PCR-directed DNA sequencing of “nondeletion” HPRT-mutants induced by bleomycin in CHO K1-BH4 cells.
Environ. Mol. Mutagen.
,
32
:
244
-250,  
1998
.
30
Yang J. L., Wang L. C., Chang C. Y., Liu T. Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxyguanosine adduct by lead acetate.
Environ. Mol. Mutagen.
,
33
:
194
-201,  
1999
.
31
Iyehara-Ogawa H., Ohyama Y., Ohsumi Y., Kakimoto K., Kato Y., Shirai Y., Nunoshiba T., Yamamoto K. Cobaltous chloride-induced mutagenesis in the supF tRNA gene of Escherichia coli.
Mutagenesis
,
14
:
249
-253,  
1999
.