Cytogenetic analyses have revealed structural rearrangements of chromosome 1 in a large fraction of head and neck carcinomas (HNCA). These aberrations frequently affect chromosomal band 1p13 and the centromeric region, the latter often in the form of isochromosome i(1q) and whole-arm translocations. To delineate the critical region involved in rearrangements of proximal 1p, we have undertaken a more precise breakpoint mapping in 13 HNCAs, using metaphase fluorescence in situ hybridization with 11 yeast artificial chromosome (YAC) clones spanning 1p. All of the tumors had chromosome 1 changes at G-banding analyses. Fluorescence in situ hybridization showed that in almost all of the cases, at least one copy of chromosome 1 was affected by centromeric rearrangement. By the use of YAC clones mapped to juxtacentromeric regions and a centromere-specific α-satellite probe, we detected variable breakpoints in the whole-arm translocations. At the cytogenetic level, 1p13 rearrangements were frequent. However, molecular breakpoints within this band varied among the HNCAs tested. The lack of consistently rearranged chromosome segments indicates that the pathogenetically important consequence of 1p rearrangements in HNCAs is loss and/or gain of genes outside the breakpoint regions. In an assessment of the genomic imbalances, partial or complete overrepresentation of 1q was seen in eight cases. Loss of 1p material was also identified in eight cases; and in four of them, the deleted segments were too small to be discovered by G-banding analysis. The minimal overlapping deleted region was in the interval between YAC 959C4 (band p11–p12) and the centromere (p10). Our findings indicate that a target region potentially harboring tumor suppressor gene(s) crucial for HNCA is located within chromosomal bands 1p11–p13.

1

Supported by Grants from the Swedish Cancer Society, the Smokeless Tobacco Research Council, Swedish Match, and the Inga Britt and Arne Lundberg Foundation.

This content is only available via PDF.