Abstract
The mitogen-activated protein kinase (MAPK) signal transduction pathway plays an essential role in cell cycle progression and can be activated by many growth factor/mitogen pathways including estrogen. MAPK has also been implicated in ligand-independent activation of estrogen receptor-α (ER-α). The development of estrogen-independent growth in breast cancer is likely a first step in progression to hormone independence and antiestrogen resistance. We examined MAPK expression and activity in T5-PRF and T5 human breast cancer cells. T5-PRF is an estrogen-nonresponsive cell line developed from T5 cells by chronically depleting the cells of estrogen in long-term culture. MAPK activity measured in vitro was significantly higher (P < 0.05) in T5-PRF compared with T5 cells. Western blot analyses showed increased levels of active dually phosphorylated MAPK in T5-PRF cell extracts compared with T5. The increased activity and expression of MAPK may contribute to the estrogen nonresponsive growth phenotype and ligand-independent activity of ER in T5-PRF cells.
This work was supported by the United States Army Medical Research and Materiel Command, the Medical Research Council of Canada, and the Manitoba Health Research Council. L. C. M. is a Medical Research Council of Canada Scientist, and A. S. C. holds a Manitoba Health Research Council Studentship.