The polyamine analogue, N1-ethyl-N11-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm)-induced programmed cell death in NCI H157 cells is accompanied by cytochrome c release, the loss of mitochondrial membrane potential, activation of caspase-3, caspase-mediated poly(ADP-ribose) polymerase cleavage, G2-M arrest, and DNA and nuclear fragmentation. Overexpression of Bcl-2 completely inhibits CHENSpm-induced cytochrome c release, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. However, Bcl-2 does not abrogate CHENSpm-induced programmed cell death. These results suggest that although cytochrome c release and activation of the caspase-3 protease cascade contribute to the rapid and efficient execution of apoptosis, a caspase cascade-independent pathway also exists and can be activated by CHENSpm treatment.

1

This work was supported in part by Grants ES07141, CA57545, CA63552, CA58184, and CA51085.

This content is only available via PDF.