Cholecystokinin (CCK)-A and CCK-B/gastrin receptors were evaluated with in vitro receptor autoradiography in 406 human tumors of various origins using a sulfated 125I-labeled CCK decapeptide analogue 125I-(d-Tyr-Gly, Nle28,31)-CCK 26-33 and 125I-labeled Leu15-gastrin as radioligands. CCK-B/gastrin receptors were found frequently in medullary thyroid carcinomas (92%), in small cell lung cancers (57%), in astrocytomas (65%), and in stromal ovarian cancers (100%). They were found occasionally in gastroenteropancreatic tumors, breast, endometrial, and ovarian adenocarcinomas. They were either not expressed or rarely expressed in colorectal cancers, differentiated thyroid cancers, non-small cell lung cancers, meningiomas, neuroblastomas, schwannomas, glioblastomas, lymphomas, renal cell cancers, prostate carcinomas, and the remaining neuroendocrine tumors (i.e., pituitary adenomas, pheochromocytomas, paragangliomas, and parathyroid adenomas). CCK-A receptors were expressed rarely in tumors except in gastroenteropancreatic tumors (38%), meningiomas (30%), and some neuroblastomas (19%). The identified CCK-A and CCK-B receptors were specific and of high affinity in the subnanomolar range. The rank order of potency of various CCK analogues was: sulfated CCK-8 = L-364,718 ≫ nonsulfated CCK-8 = L-365,260 ≥ gastrin for CCK-A receptors and sulfated CCK-8 > gastrin = nonsulfated CCK-8 > L-365,260 > L-364,718 for CCK-B receptors. CCK-B receptors could also be selectively and specifically labeled with a newly designed nonsulfated 125I-(d-Tyr-Gly, Nle28,31)-CCK 26–33. Gastrin mRNA measured by in situ hybridization was present in most CCK-B receptor-positive small cell lung cancers, breast tumors, and ovarian tumors, representing the molecular basis of a possible autocrine growth regulation of these tumors. Gastrin and CCK mRNAs were lacking in medullary thyroid cancers. Thus, these results may have pathogenic, diagnostic, differential diagnostic, and therapeutic implications.

This content is only available via PDF.