To investigate the role of AP-1 transcription factors in mediating retinoid-induced growth suppression of breast cells, we studied the sensitivity of MCF7 breast cancer cells with different levels of AP-1 activity to all-trans retinoic acid (atRA). AP-1 activity was increased in MCF7 cells by stably transfecting c-jun cDNA into these cells. Parental and vector-transfected MCF7 cells, which were sensitive to the growth-inhibitory effects of atRA, exhibited atRA-dependent retinoic acid receptor (RAR) transactivation and transrepression of 12-O-tetradecanoylphorbol-13-acetate-induced AP-1 activity. The c-jun-transfected MCF7 cells had increased basal AP-1 transactivation activity and increased expression of AP-1-regulated genes but were resistant to the antiproliferative effects of atRA. However, MCF7 cells transfected with a deletion mutant of c-jun, TAM-67, which lacks most of the amino-terminal transactivation domain of cJun and is unable to activate AP-1-dependent gene expression, were sensitive to the growth-inhibitory effects of atRA. These results suggest that the transactivation domain of cJun is required for induction of retinoid resistance in these breast cancer cells. atRA did not activate RAR-dependent gene transcription or transrepress 12-O-tetradecanoylphorbol-13-acetate-induced AP-1 activity in these cJun-overexpressing cells. Investigation of the RAR and retinoic acid X receptor expression level demonstrated that RARα and RARγ RNA expression was reduced in the c-jun-transfected MCF7 cells, whereas RARβ expression was up-regulated. However, retinoic acid responsive element DNA binding activity was intact in c-jun-transfected cells. Therefore, the mechanism by which cJun overexpression induces resistance to the growth-inhibitory effect of atRA may be through interference with atRA-dependent RAR transactivation or AP-1 transrepression, possibly through titration of essential coactivators. These results suggest that the antiproliferative effects of retinoids can be overcome by cJun overexpression.


This work was supported by San Antonio Cancer Institute Grant P30 CA 54174 (L. M. Y.), Department of Defense Grant DAMD-17-96-1-6225 (to P. H. B. and D. M. M.), and a grant from the V Foundation for Cancer Research.

This content is only available via PDF.