Abstract
To explore the feasibility of targeting human tumor cells via their transport systems, dipeptide uptake was studied in the human fibrosarcoma cell line HT1080 and the human fibroblast cell line IMR-90 by the use of hydrolysis-resistant glycylsarcosine (Gly-Sar). The uptake of [14C]Gly-Sar into HT1080 was time dependent. Kinetic analysis of the concentration dependence of the initial rate of [14C]Gly-Sar uptake showed that a carrier-mediated transport system with a Km of 11.4 ± 3.3 mm and Vmax of 26.8 ± 4.0 (nmol/15 min/mg protein) and a nonsaturable component (kd of 0.80 µl/15 min/mg protein) were responsible for the dipeptide uptake by HT1080 cells. The optimal pH for the maximal uptake was around 6.0. [14C]Gly-Sar uptake was inhibited by various di- and tripeptides and peptide-mimetic drugs, such as bestatin and cefadroxil. [14C]Gly-Sar uptake was not affected by the presence of amino acids or tetra- or pentapeptides. The uptake of cefadroxil was reduced significantly by unlabeled Gly-Sar. Moreover, Gly-Gly and Gly-Leu produced an increase in the apparent Km of the uptake of Gly-Sar without altering Vmax. On the other hand, dipeptide uptake by IMR-90, which is a normal diploid cell line (not malignant), showed no saturable transport. These results suggest that HT1080 cells take up dipeptides via a pH-dependent transporter. This is the first report showing that a dipeptide transport system, which is similar but not identical to the well-characterized oligopeptide transporters PepT1 and PepT2, exists in fibroblast-derived tumor cells but not in normal fibroblasts. The present finding could be the basis of a novel strategy for the specific delivery of oligopeptide-mimetic anticancer drugs into tumor cells.
This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan, and by a grant from the Japan Health Sciences Foundation Drug Innovation Project.