Breast cancers require the presence of estrogens for the maintenance of growth at some time in the course of their development, as does normal breast tissue. Sulfation is an important process in the metabolism and inactivation of steroids, including estrogens, because the addition of the charged sulfonate group prevents the binding of the steroid to its receptor. Also, many of the therapeutic and chemopreventive agents used in the treatment of breast cancer are substrates for the sulfotransferases (STs).

The activity and expression of four cytosolic STs, which are the human phenol-sulfating and monoamine-sulfating forms of phenol ST (PST), dehydroepiandrosterone ST, and estrogen ST (hEST), were assayed in normal breast cells and in breast cancer cell lines. ST activities and immunoreactivities were assayed in the estrogen receptor-positive human breast cancer cell lines ZR-75-1, T-47D, and MCF-7; in the estrogen receptor-negative breast cancer cell lines BT-20, MDA-MB-468, and MDA-MB-231; and in normal human mammary epithelial cells. The PSTs were the most highly expressed ST activities in the breast cancer cell lines, although the levels of activity varied significantly. ZR-75-1 and BT-20 cells possessed the highest levels of activity of the human phenol-sulfating form of PST. The breast cancer cell lines showed only trace levels of dehydroepiandrosterone ST and hEST activities. In contrast, hEST was the only ST detectable in human mammary epithelial cells. Understanding the regulation of ST activity in these breast cancer and normal breast cell lines will improve our knowledge of the role of sulfation in breast cancer and provide a model with which to study the mechanism of action of estrogens in mammary cells.


This research was supported by NIH Grant GM38953 and American Institute for Cancer Research Grant 95A106 (to C. N. F.).

This content is only available via PDF.