Poorly immunogenic tumor cells genetically transduced to simultaneously express the cytokine interleukin 6 (IL-6) and the bacterial metabolic suicide gene cytosine deaminase (205-IL6-CD) become highly immunogenic. They are rejected by normal mice without 5-fluorocytosine prodrug treatment. Mice with preexisting wild-type pulmonary micrometastases exhibit prolonged survival and an increased rate of cure when treated with live 205-IL6-CD cells as a therapeutic vaccine. Treatment with these autologous tumor cells producing both the cytokine and the bacterial protein was more effective than treatment with exogenous IL-6 and/or irradiated wild-type tumor cells. Irradiation of the 205-IL6-CD cells significantly reduced their therapeutic efficacy. Therapeutic vaccination with 205-IL6-CD was more effective in animals with wild-type 205 tumor than in animals bearing an unrelated syngeneic tumor. Vaccine efficacy was significantly reduced in animals pretreated with high-dose cyclophosphamide. The results indicate that genetically engineered autologous tumor vaccines may be capable of inducing significant antitumor immunity in hosts of preexisting micrometastatic disease.

This content is only available via PDF.