We used human tumor cell lines from the National Cancer Institute's In Vitro Antineoplastic Drug Screen to assess whether sensitivity to any of the ∼45,000 compounds tested previously correlated with the presence of a ras oncogene. Among these cell lines, the mutations in Ki-ras2 clustered in non-small cell lung and colon carcinoma subpanels, and five of the six leukemia lines contained mutations in either N-ras or Ki-ras2. These analyses revealed a striking correlation with 1-β-d-arabinofuranosylcytosine (Ara-C) and 2,2′-O-cyclocytidine sensitivity in the cell lines harboring ras mutations compared to the tumor lines with wild-type ras alleles. Strong correlations were also found with topoisomerase (topo) II inhibitors, especially 3′-hydroxydaunorubicin and an olivacine derivative. These differential sensitivities persisted in an additional 22 non-small cell lung carcinoma lines (ras mutations, n = 12 and wild-type ras, n = 10). Thus, the association with Ara-C sensitivity was greatest while topo II inhibitors showed a lower, but significant, correlation. These results suggest that the ras oncogene may play a determinant role in rendering tumor cells sensitive to deoxycytidine analogues and topo II inhibitors.

1

Supported in part by the National Cancer Institute, Department of Health and Human Servies, under contract with ABL.

This content is only available via PDF.