We introduced the gene for wild-type human p53 or p21, a critical downstream mediator of p53-induced growth suppression, into a p53-deficient mouse prostate cancer cell line using a recombinant adenoviral vector (Ad5CMV-p53 or Ad5CMV-p21). Elevated levels of endogenous mouse p21 mRNA provided evidence for the functional activity of virally transduced p53. Functional activity of viral-transduced p21 was demonstrated through immunoprecipitation of cellular protein extracts, which showed that the viral-transduced p21 associates with cyclin-dependent kinase 2 and was sufficient to down-regulate the activity of the cyclin-dependent kinase by approximately 65%. In vitro growth assays revealed significantly higher growth suppression after Ad5CMV-p21 infection compared to Ad5CMV-p53. In vivo studies in syngeneic male mice with established s.c. prostate tumors demonstrated that the rate of growth and final tumor volume were reduced to a much greater extent in mice that received intratumor injection of Ad5CMV-p21 compared to Ad5CMV-p53. In addition, the survival of host animals bearing tumors that were infected with Ad5CMV-p21, but not Ad5CMV-p53, was significantly extended. These data suggest that Ad5CMV-p21 may be effective as a therapeutic agent for prostate cancer.

1

Supported by NIH Grants SPORE P50-CA58204 and CA50588 and grants from the CaP Cure Foundation (to T. C. T.), the National Kidney Foundation (to J. A. E.), and the Welch Foundation (to J. W. H).

This content is only available via PDF.