Amplification and rearrangement of the epidermal growth factor receptor (EGFR) gene are characteristics of many types of tumors. One class of EGFR mutations, EGFRvIII, is characterized by an in-frame deletion resulting in a truncated external domain of the receptor. EGFR-vIII was first identified in a subset of gliomas and has since been found in some non-small cell lung carcinomas and breast carcinomas. mAbs specific for this variant form of EGFR but unreactive with the wild-type EGFR have been reported from our laboratory. This study further characterizes three of these antibodies. We determined, via radiolabeling techniques and immunofluorescence microscopy, that, after cell binding in vitro, the anti-EGFRvIII-specific mAbs internalize at 37°C. Furthermore, subsequent to internalization, the antibodies were processed intracelluarly, presumably by lysosomal degradation. We also examined the use of an alternative radiolabeling procedure that uses nonmetabolizable radioiodinated tyramine cellobiose. Our results show that the tyramine cellobiose labeling method allows for greater tumor cell retention of radiolabel in vitro (76% for tyramine cellobiose and 27% for Iodo-Gen after 24 h). Paired-label biodistribution studies in athymic mice indicate that anti-EGFRvIII mAb L8A4 localizes specifically to EGFRvIII-expressing tumor xenografts with a maximum of 34.3 ± 7.6% injected dose/g when labeled using tyramine collobiose compared with a maximum of 14.9 ± 4.3% injected dose/g using Iodo-Gen; similar results were obtained with mAb H10. These results suggest that the anti-EGFRvIII mAbs may serve as potential carriers for radioconjugate- and immunotoxin-based therapies for tumors expressing EGFRvIII.


Supported in part by NIH Grants NS 20023, CA 56115, CA 11898, and CA 42324.

This content is only available via PDF.