bcl-2 is the first member of a new class of protooncogenes the products of which inhibit programmed cell death (PCD) or apoptosis. We have previously determined that Bcl-2 is expressed in a significant percentage of untreated primary neuroblastoma (NBL) tumors. In these specimens Bcl-2 expression correlated with other markers of poor prognosis suggesting a role for Bcl-2 in the malignant behavior of NBL tumor cells. To investigate this possibility, a Bcl-2-negative human NBL cell line (Shep-1) was transfected with a bcl-2 expression vector (pSFFVneo-bcl-2). Multiple unique clones were isolated which showed variable levels of Bcl-2 protein by quantitative immunoprecipitation. Vector-transfected controls were generated simultaneously. Clones expressing high levels of Bcl-2 were resistant to cisplatin- and etoposide-induced cytotoxicity in a dose-dependent manner. Analysis of propidium iodide-stained nuclei by flow cytometry after cisplatin or etoposide treatment revealed marked DNA degradation in vector-transfected controls whereas bcl-2 transfectants showed a dose-dependent inhibition of DNA degradation. Analysis by pulsed-field gel electrophoresis revealed relatively large fragment DNA degradation (∼50 kilobases) in the absence of internucleosomal degradation in vector-transfected control cells treated with either cisplatin or etoposide. In contrast, Bcl-2-expressing cells showed significantly less DNA degradation at all time points. These single gene transfection experiments have revealed that expression of Bcl-2 renders specific NBL cells resistant to chemotherapy-induced PCD and support the hypothesis that Bcl-2 enhances the malignant phenotype of NBL by promoting tumor resistance to chemotherapy agents.


Supported by National Institute of Child Health Development Grant HD28820 to V. P. C., American Cancer Society Grant IM 700 to G. N., and NIH Grant CA-56663 to J. M.

This content is only available via PDF.