Tamoxifen has been found to be metabolized by liver primarily into three metabolites, tamoxifen-N-oxide, formed by the flavin-containing monooxygenase, and N-desmethyl- and 4-hydroxytamoxifen, formed by cytochrome P450. The N-demethylation was demonstrated to be catalyzed by P4503A in rat and human liver; however, the P450s catalyzing the 4-hydroxylation have not been identified. Although 4-hydroxytamoxifen exhibits more potent estrogen agonist/antagonist activity than tamoxifen, the relative contributions of the parent drug and its 4-hydroxy metabolite(s) to the activity of tamoxifen in vivo have not been established. We report here that the rate of tamoxifen 4-hydroxylation is higher in livers of adult chicken and chick embryos than in livers of mammalian species. Tamoxifen 4-hydroxylation was increased by treatment of chick embryos with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), β-naphthoflavone (βNF), and to a lesser extent by phenobarbital (PB). The major effect of PB treatment was an increase in tamoxifen N-demethylation. Tamoxifen 4-hydroxylase activity of reconstituted purified chicken P450s was highest for TCDDAA, a P450 active in arachidonate epoxygenation and estradiol 2-hydroxylation, and one of the two major P450s induced by TCDD and βNF in chick embryo liver. The second P450, TCDDAHH, which is active in aryl hydrocarbon hydroxylase and 7-ethoxyresorufin deethylase was inactive in tamoxifen 4-hydroxylation. Anti-TCDDAA IgG immunoinhibited tamoxifen 4-hydroxylation in microsomes from βNF-treated embryos by over 80%, but was ineffective against this reaction in the controls. The immunochemical findings together with the reconstitution data identify TCDDAA as the P450 responsible for TCDD/βNF-induced tamoxifen 4-hydroxylation in chick liver. In PB-treated livers, a P450 fraction containing CYP2H1/H2, the major PB-induced P450s, had the highest tamoxifen 4-hydroxylase and N-demethylase activities, a finding compatible with one or both of those P450s being responsible for the PB-induced tamoxifen 4-hydroxylation and N-demethylation. The findings reported here raise the possibility that exposure of women undergoing tamoxifen therapy to agents that induce human CYP1A2 or CYP2B1/2 analogues may produce increased levels of 4-hydroxytamoxifen and that this may affect the therapeutic potency of tamoxifen.


This work was supported by USPHS Grants ES00834 (D. K.) and ESO3606 (A. B. R.) from the National Institute of Environmental Health Sciences. A preliminary report of this investigation was presented at the ASBMB-ACS Joint Meeting in San Diego, CA, May 30–June 3, 1993 (35).

This content is only available via PDF.