The present study identifies the specific human cytochrome P-450 (CYP) enzymes involved in hydroxylation leading to activation of the anticancer drug cyclophosphamide and its isomeric analogue, ifosphamide. Substantial interindividual variation (4-9-fold) was observed in the hydroxylation of these oxazaphosphorines by a panel of 12 human liver microsomes, and a significant correlation was obtained between these 2 activities (r = 0.85, P < 0.001). Enzyme kinetic analyses revealed that human liver microsomal cyclophosphamide 4-hydroxylation and ifosphamide 4-hydroxylation are best described by a 2-component MichaelisMenten model composed of both low Km and high Km P-450 4-hydroxylases. To ascertain whether one or more human P-450 enzymes are catalytically competent in activating these oxazaphosphorines, microsomal fractions prepared from a panel of human B-lymphoblastoid cell lines stably transformed with individual P-450 complementary DNAs were assayed in vitro for oxazaphosphorine activation. Expressed CYP2A6, -2B6, -2C8, -2C9, and -3A4 were catalytically competent in hydroxylating cyclophosphamide and ifosphamide. Whereas CYP2C8 and CYP2C9 have the characteristics of low Km oxazaphosphorine 4-hydroxylases, CYP2A6, -2B6, and -3A4 are high Km forms. In contrast, CYP1A1, -1A2, -2D6, and -2E1 did not produce detectable activities. Furthermore, growth of cultured CYP2A6- and CYP2B6-expressing B-lymphoblastoid cells, but not of CYP-negative control cells, was inhibited by cyclophosphamide and ifosphamide as a consequence of prodrug activation to cytotoxic metabolites. Experiments with P-450 form-selective chemical inhibitors and inhibitory anti-P-450 antibodies were then performed to determine the contributions of individual P-450s to the activation of these drugs in human liver microsomes. Orphenadrine (a CYP2B6 inhibitor) and anti-CYP2B IgG inhibited microsomal cyclophosphamide hydroxylation to a greater extent than ifosphamide hydroxylation, consistent with the 8-fold higher activity of complementary DNA-expressed CYP2B6 with cyclophosphamide. In contrast, troleandomycin, a selective inhibitor of CYP3A3 and -3A4, and anti-CYP3A IgG substantially inhibited microsomal ifosphamide hydroxylation but had little or no effect on microsomal cyclophosphamide hydroxylation. By contrast, the CYP2D6-selective inhibitor quinidine did not affect either microsomal activity, while anti-CYP2A antibodies had only a modest inhibitory effect. Overall, the present study establishes that liver microsomal CYP2B and CYP3A preferentially catalyze cyclophosphamide and ifosphamide 4-hydroxylation, respectively, suggesting that liver P-450-inducing agents targeted at these enzymes might be used in cancer patients to enhance drug activation and therapeutic efficacy.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.


Supported in part by Grant CA-49248 from the NIH (D. J. W.). T. K. H. C. was supported by a Canadian Liver Foundation Research Fellowship and G. F. W. by a Deutsche Forschungsgemeinschaft Postdoctoral Fellowship.

This content is only available via PDF.