Hexadecylphosphocholine (HePC) inhibits protein kinase C (PKC) from NIH3T3 cells in cell-free extracts with a 50% inhibitory concentration of about 7 µm. Inhibition is competitive with regard to phosphatidylserine with a K1 of 0.59 µm. In order to determine whether HePC affects PKC in intact cells, the bombesin or tetradecanoylphorbolacetate-induced, PKC-mediated activation of the Na+/H+-antiporter was determined. It is demonstrated that HePC causes a drastic inhibition of this enzyme indicating a similar sensitivity of PKC to HePC in intact cells compared to cell-free extracts. In addition to the effects on PKC, treatment of NIH3T3 cells with HePC depresses the bombesin-induced formation of inositol 1,4,5-trisphosphate and the concomitant mobilization of intracellular Ca2+. Dose-response curves for the inhibition of inositol 1,4,5-trisphosphate formation and Ca2+ mobilization reveal 50% inhibitory concentrations of 2 or 5 µm, respectively. Polyphosphorylated phosphoinositides accumulate in HePC-treated cells indicating that the depression of inositol 1,4,5-trisphosphate generation is not caused by an inhibition of phosphoinositide kinases. Addition of bombesin to HePC-treated cells in the presence of LlCl revealed no evidence for an accelerated rate of inositol 1,4,5-trisphosphate turnover by the phospholipid analogue. It is concluded that HePC inhibits phosphoinositidase C in intact cells. The data strongly suggest that the growth-inhibitory effect of HePC is at least in part explained by the interference with mitogenic signal transduction.

1

Supported by the Ministry of Research and Technology (Bundesministerium für Forschung und Technologie), Federal Republic of Germany. Parts of these data were presented at the Fifteenth International Cancer Congress, Hamburg, August 16–22, 1990.

This content is only available via PDF.