In this paper we demonstrate that the mutants CHO7PV and CHO4PV isolated by us from the CHO-K1 prol- cell line represent two new complementation groups of UV-sensitive excision repair-defective rodent mutants. We have classified the mutant CHO7PV as representative of Group 9 and CHO4PV as representative of Group 10. Cellular and biochemical characterization of these mutants indicates that they are moderately sensitive to a broad spectrum of mutagens (UV and mono- and bifunctional alkylating agents), partially unable to perform UV-induced DNA repair synthesis, and partially defective in the incision step of the DNA excision repair pathway and in the removal of the two main lesions caused by UV [cyclobutane pyrimidine dimers and (6–4) photo-products]. In terms of UV survival and incision, CHO4PV is apparently more defective than CHO7PV (40% and 50% of wild-type survival, respectively, and 55% and 75% of wild-type incision), whereas when repair DNA synthesis and lesion removal are compared, CHO7PV seems to be more severely affected (30% of wild-type unscheduled DNA synthesis in CHO7PV and 60% in CHO4PV). This suggests a subtlety in the relation between removal of these specific lesions and overall repair capacity and survival.

1

Supported by grants from the National Research Council of Italy (CNR Target Project Ingegneria Genetica), from the Commission of European Communities (Contract Bi7-034), and from the Cancer Research Campaign.

This content is only available via PDF.