Adriamycin (ADR), an anthracycline anticancer drug, was bound to the poly(aspartic acid) chain of poly(ethylene glycol)-poly(aspartic acid) block copolymer by amide bond formation between an amino group of Adriamycin and the carboxyl groups of the poly(aspartic acid) chain. The polymeric drug thus obtained was observed to form a micelle structure possessing diameter of approximately 50 nm, with a narrow distribution, in phosphate-buffered saline and to show excellent water solubility despite a large amount of ADR introduction. Further, it was able to be stored in lyophilized form without losing its water solubility in the redissolving procedure. Increased stability of the bound Adriamycin molecules in phosphate-buffered saline and elimination of binding affinity for bovine serum albumin due to the micelle formation were further advantages of this polymeric drug. In vivo high anticancer activity of this micelle-forming polymeric drug against P 388 mouse leukemia was obtained with less body weight loss than that seen with free ADR, due to low toxicity as compared with free ADR.

This content is only available via PDF.