Ewing's sarcoma (ES) is a highly malignant childhood bone tumor and is considered curable by moderate doses of radiotherapy. The addition of chemical inhibitors of the activity of the nuclear enzyme poly(adenosine diphosphate ribose) [poly(ADPR)] polymerase to ES cells in culture results in increased cell killing, a phenomenon called “inhibitor sensitization.” Since poly(ADPR) polymerase is thought to be associated with DNA repair, it has been suggested that ES cells and other inhibitor-sensitized cells may have a reduced capacity for polymer synthesis resulting in deficient postirradiation recovery. We present here the unexpected observation that in comparison to other cell lines tested, ES cells exhibit a high enzyme activity, higher constitutive levels of the protein, and elevated levels of its mRNA transcript for poly(ADPR) polymerase. No gross amplifications or rearrangements of the gene were observed; however, regulation of poly(ADPR) polymerase in these tumor cells takes place at the level of the gene transcript.


This work was supported in part by grants from the American Cancer Society and the NIH.

This content is only available via PDF.