This report describes the isolation and characterization of DNA adducts formed in vitro from α-acetoxy-N-nitrosopyrrolidine and in rats treated with the hepatocarcinogen N-nitrosopyrrolidine. Esterase-catalyzed hydrolysis of α-acetoxy-N-nitrosopyrrolidine in the presence of calf thymus DNA, followed by neutral thermal hydrolysis of the DNA, resulted in formation of three previously unknown Adducts 1–3. They were isolated and characterized by their UV, mass, and proton magnetic resonance spectra as the exocyclic 7,8-guanine adducts 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (Adduct 1), and cis- and trans-2-amino-7,8-dihydro-8-hydroxy-6-methyl-3H-pyrrolo[2,1- f] purine-4(6H)-one (Adducts 2 and 3). Adduct 1 was formed by addition of 4-oxobutyl diazohydroxide, or a related carbonium ion, to the 7 and 8 positions of guanine. Adducts 2 and 3 resulted from Michael addition of 2-butenal to the 7 and 8 positions of guanine. Esterase-catalyzed hydrolysis of α-acetoxy-N-nitrosopyrrolidine in the presence of DNA also produced the exocyclic 1,N2-propanodeoxyguanosine Adducts 4a and 4b which we have previously described. Neutral thermal hydrolysates of hepatic DNA isolated from rats treated with N-nitrosopyrrolidine contained a fluorescent adduct, as previously reported (E. J. Hunt and R. C. Shank, Biochem. Biophys. Res. Commun., 104: 1343, 1982). This fluorescent adduct was shown to be identical to Adduct 1. Adducts 2, 3, 4a, and 4b were not detected in hepatic DNA hydrolysates from these animals. The results of this study provide the first example of a structurally characterized DNA adduct formed in vivo from a cyclic nitrosamine and support the α-hydroxylation hypothesis of cyclic nitrosamine metabolic activation.

1

This study was supported by Grant 44377 from the National Cancer Institute. This is Paper 119 of the series, “A Study of Chemical Carcinogenesis.”

This content is only available via PDF.