Radio-iodinated m-iodobenzylguanidine (MIBG), an analogue of the neurotransmitter norepinephrine (NE), is increasingly used in the diagnosis and treatment of neural crest tumors. Active uptake and subsequent retention of MIBG and NE was studied in human neuroblastoma SK-N-SH cells. Neuron-specific uptake of [125I]MIBG and [3H]NE saturated at extracellular concentration of 10-6m and exceeded by 20–30-fold that by passive diffusion alone. A minimum of 50% of accumulated MIBG remained permanently stored but the SK-N-SH cells were incapable of retaining recaptured [3H]NE. [125I]MIBG was displaced from intracellular binding sites by unlabeled MIBG with 10-fold higher potency than by unlabeled NE. MIBG stored in SK-N-SH cells was insensitive to depletion by the inhibitor of granular uptake reserpine (RSP) and was not precipitated in a granular fraction by differential centrifugation. Only few electron-dense granules were found in these cells by electron microscopy. In contrast, MIBG storage in PC-12 pheochromocytoma cells which contained many storage granules, was sensitive to RSP and part of accumulated drug was recovered in a granular fraction. Accordingly, storage of MIBG in the SK-N-SH neuroblastoma cells is predominantly extravesicular and thus essentially different from that of biogenic amines in normal adrenomedullary tissue or in pheochromocytoma tumors, while sharing with these tissues a common mechanism of active uptake.


Supported in part by the Ministry of Health (Contract WVC-86) and the Queen Wilhelmina Foundation, The Dutch Cancer Organization (Contract NKI-87-16).

This content is only available via PDF.