Exposure of certain cell lines to the differentiation-inducing agent N-methylformamide (NMF) enhances their radiosensitivity. As part of an attempt to elucidate the mechanism of NMF-induced radiosensitization, we examined the effects of NMF on chromatin structure, as reflected by changes in DNA-protein cross-links (DPCs) and the chromatin protein/DNA ratio, in two cell lines, clone A and HCA-1. Both lines form a better-differentiated phenotype upon exposure to NMF, yet only clone A is radiosensitized. Ionizing radiation induced DPCs in a linear manner beginning at about 10 Gy and continuing to at least 50 Gy in both cell types. NMF treatment of HCA-1 cells did not affect the background level of DPCs, but it enhanced the formation of radiation-induced DPCs at each dose tested. In clone A cells, NMF exposure elevated the DPC background level more than two-fold, and modified radiation-induced DPCs. The dose response for radiation-induced DPCs in NMF-treated clone A cells consisted of a linear increase up to 12.5 Gy, which was greater than in untreated cells, followed by a plateau level of DPCs out to 50 Gy, the highest dose tested. NMF treatment of clone A, but not HCA-1, cells also increased the chromatin protein/DNA ratio by about 30–35%. In clone A cells, the increases in DPC background level and chromatin protein/DNA ratio as a function of NMF exposure time followed a pattern similar to that of the enhancement of radiosensitivity. These data suggested that modifications of chromatin structure, not involved in differentiation, may be associated with the radiosensitizing actions of NMF.

1

This work is supported by Grant CA-06294 from the National Institutes of Health.

This content is only available via PDF.