Abstract
Unscheduled DNA synthesis (UDS)-inducing activity was used as a parameter to estimate the abilities of rat mammary epithelial cells and urothelial cells from various species to activate carcinogenic aromatic amine derivatives. The N-hydroxy, N-hydroxy-N-acetyl, N-hydroxy-N-glucuronosyl derivatives of 2-aminofluorene (2-AF) and 4-aminobiphenyl (4-ABP) induced UDS in primary cultures of rat mammary epithelial cells, but 2-AF, the O-glucuronide of N-hydroxy-N-acetyl-2-AF (N-OH-AAF) and 4-ABP did not. Neither the activity of N-OH-AAF, N-hydroxy-N-formyl-2-AF, nor N-acetoxy-N-acetyl-2-AF was significantly altered by paraoxon, an inhibitor of microsomal N-deacetylase. Although N-hydroxy-3,2′-dimethyl-4-aminobiphenyl (N-OH-DMABP) also induced UDS, its N-acetyl derivative, which can not be activated by intramolecular N,O-acetyltransfer, did not. Similarly, rat urothelial cells were responsive to the UDS-inducing activity of this hydroxylamine, but not the hydroxamic acid. In contrast, dog urothelial cells were responsive to both compounds. The UDS-inducing activity of N-OH-AAF was inhibited by paraoxon in the dog, but not in rat urothelial cells. N-Hydroxy-N,N′-diacetylbenzidine induced UDS in the urothelial cells of dog, rat, and rabbit, and a human urothelial cell line, HCV-29, whereas benzidine, N-acetylbenzidine, and N,N′-diacetylbenzidine did not. Co-treatment with 12-O-tetradecanoylphorbol-13-acetate did not enable benzidine to induce UDS in dog urothelial cells. Rat mammary epithelial cells activated N-OH-DMABP by acetyl coenzyme A-dependent O-acetylation and N-OH-AAF by N,O-acetyltransfer. They could not N-deacetylate N-OH-AAF. These results suggest that rat mammary and bladder epithelial cells are capable of activating N-arylhydroxylamine metabolites of these carcinogens, probably by N,O-acetyltransfer and O-acetylation, whereas dog urothelial cells are more likely to activate these metabolites by N-deacetylation and a reaction that has yet to be identified.
The studies in this report from the A. Alfred Taubman Facility were supported by USPHS Grants CA23386 and CA23800 from the National Cancer Institute and an institutional grant from the United Foundation of Detroit. Preliminary reports were presented previously (1, 2).