A computer program which accepts clinically relevant information can be used to predict breast cancer growth, response to chemotherapy, and disease-free survival. The computer output is patient individualized because the program is highly iterative and simulates up to 2500 patients with exactly the same clinical presentation. Computer predictions have been compared to a broad spectrum of breast cancer data, and a high degree of correlation has been established. There are numerous significant clinical implications which can be derived from the computer model. Among these are the following. (a) Breast cancer tumors do not grow continuously but may have up to five growth plateaus each lasting from a small fraction of a year up to approximately 8 yr. (b) Adjuvant chemotherapy, such as 6-mo treatment with cyclophosphamide-methotrexate-5-fluorouracil, does not eradicate tumors but just reduces the number of viable cells by a factor of 10 to 100 and sets the eventual growth back by several years. This may partially explain why the ageadjusted death rate from breast cancer has not changed in the past 50 yr. (c) The computer model challenges the underlying principles in support of short-term intensive adjuvant chemotherapy, namely Gompertzian kinetics and genetically acquired tumor resistance to drugs. (d) The computer Model questions the evidence opposing long-term maintenance chemotherapy protocols and suggests that maintenance protocols should be reexamined.

This content is only available via PDF.