The sensitivity of cultured L1210 and P388 cells sensitive (L1210/0, P388/0) and resistant (L1210/OAP, P388/CLA) to oxazaphosphorines, to 4-hydroperoxycyclophosphamide, ASTA Z-7557, phosphoramide mustard, and acrolein was determined in the absence and presence of known (disulfiram, diethyldithiocarbamate, cyanamide) or suspected [ethylphenyl(2-formylethyl)phosphinate] inhibitors of aldehyde dehydrogenase activity. The L1210/OAP cell line is resistant specifically to the oxazaphosphorines; P388/CLA cells are partially cross-resistant to other cross-linking agents. All four inhibitors of aldehyde dehydrogenase activity potentiated the cytotoxic action of the oxazaphosphorines, 4-hydroperoxycyclophosphamide and ASTA Z-7557, against L1210/OAP and P388/CLA cells; in the presence of a sufficient amount of inhibitor, sensitivity was essentially fully restored in both cases. The inhibitors did not potentiate the cytotoxic action of the nonoxazaphosphorines, phosphoramide mustard and acrolein, against these cell lines. The cytotoxic action of the oxazaphosphorines and nonoxazaphosphorines against L1210/0 and P388/0 cells was not potentiated by any of the aldehyde dehydrogenase inhibitors. Inhibitors of xanthine oxidase or aldehyde oxidase activities did not potentiate the cytotoxic action of the oxazaphosphorines against L1210/OAP cells. These observations strongly suggest that (a) aldehyde dehydrogenase activity is an important determinant with regard to the sensitivity of a cell population to the oxazaphosphorines; (b) L1210/0 and P388/0 cells lack the relevant aldehyde dehydrogenase activity; (c) the phenotypic basis for the resistance to oxazaphosphorines by L1210/OAP cells is aldehyde dehydrogenase activity; and (d) the major reason that P388/CLA cells are resistant to oxazaphosphorines is aldehyde dehydrogenase activity.

1

Supported by USPHS Grant CA 21737.

This content is only available via PDF.