We have investigated the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on iron uptake into human hematopoietic cell lines K562, U937, and HL-60. TPA inhibited both cell growth and iron uptake by these cell lines. This effect was rapid, which is typical of phorbol esters which are biologically active, and it occurred at very low concentrations of TPA. This effect of TPA was dependent upon an inhibition of the transferrin-binding capacity as estimated on intact cells. However, experiments with transferrin binding on cell samples dissolved in 1% Triton X-100 showed that TPA-treated cells exhibited a transferrin-binding capacity similar to that of control cells. On the basis of this result, it is suggested that TPA modified a part of transferrin receptors present in the cells; as a result of this modification, these receptors became unavailable for binding transferrin, but they remained physically present in the cell. Other compounds capable of inducing the differentiation of leukemic cells, such as dimethyl sulfoxide, butyrate, retinoic acid, and 1α,25-dihydroxyvitamin D3, did not acutely inhibit iron uptake. We also investigated the effect of TPA on transferrin receptors in a cellular system in which phorbol esters stimulate cell proliferation. At 16 × 10-9m. TPA markedly stimulated the proliferation of T-lymphocytes. However, in spite of this marked stimulation of cell proliferation, TPA-stimulated lymphocytes exhibited a transferrin-binding capacity much inferior to cells stimulated by other mitogens, such as phytohemagglutinin.


This work was supported by a grant from INSERM.

This content is only available via PDF.