Phenacetin was mutagenic in Salmonella typhimurium TA100 in plate assays when liver fractions from Aroclor-treated hamsters, but not rats, were used. Its known or putative metabolites were synthesized; of these, N-hydroxyphenacetin and N-acetoxyphenacetin were found to be mutagenic in liquid and plate assays, both requiring activation by liver fractions from Aroclor-treated hamsters. 2-Hydroxyphenacetin and 2-acetoxyphenacetin were nonmutagenic. N-Hydroxyphenetidine (the deacetylated metabolite of phenacetin) and p-nitrosophenetole were the only products that were found to be mutagenic per se when assayed under N2 in either Salmonella TA100 and TA100 NR (nitroreductase-deficient) strains.

Phenacetin was administered to male BDVI rats and Syrian golden hamsters, and its urinary metabolites were deconjugated with β-glucuronidase:arylsulfatase. After reactivation by hamster liver fractions, mutagenicity was demonstrated in S. typhimurium TA100 with urine from phenacetin-treated hamsters, but not with that from rats. After treatment with deconjugating enzymes, N-hydroxyphenacetin was isolated from hamster urine by high-performance liquid chromatography and identified by mass spectral analysis. The data support the conclusions that (a) N-hydroxyphenacetin is a proximate mutagenic metabolite of phenacetin which, after N-deacetylation, is responsible for the mutagenicity observed in vitro and in the urine of hamsters and (b) the higher yield of N-hydroxyphenacetin that is formed in the liver of hamsters as compared to rats explains the pronounced species-specific activation of phenacetin into bacterial mutagens.


These data were presented in part at the 11th Annual Meeting of the European Environmental Mutagen Society, Budapest, Hungary, July 1981. Supported in part by Contract N01-CP-55630 from the National Cancer Institute, NIH, Bethesda, Md.

This content is only available via PDF.