The mechanism of uptake of nitrosoureas by L5178Y cells in vitro was investigated. A time course of the uptake of radioactivity on incubation of L5178Y lymphoblasts with [14C]-1,3-bis(2-chloroethyl)-1-nitrosourea was linear for 30 min and then entered a plateau phase; it was markedly temperature dependent. A similar time course for cells incubated with [14C]ethylene-labeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea reached equilibrium rapidly, was temperature independent, and resulted in a relatively low level of uptake of radioactivity. However, cells treated with 3-[cyclohexyl-14C]-1-(2-chloroethyl)-1-nitrosourea had a time course that was linear for 30 min, resulted in much higher levels of uptake of radiactivity, and was strongly temperature dependent. These findings, at least for 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, suggest that some drug decomposition precedes uptake.

The percentage of radioactivity found in the cell sap fraction was at least 85% of total cell activity when cells were incubated with any of the three 14C-labeled nitrosoureas. Furthermore, thin-layer chromatography of the cell sap fraction revealed the presence of free intact drug. These findings indicate that intracellular uptake of intact nitrosoureas occurred. A time course of uptake of intact 1,3-bis(2-chloroethyl)-1-nitrosourea reached equilibrium rapidly with cell/medium distribution ratios of 0.2 to 0.6 and was temperature independent. The addition of excess unlabeled 1,3-bis(2-chloroethyl)-1-nitrosourea or 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea had no effect on uptake of [14C]-1,3-bis(2-chloroethyl)-1-nitrosourea. These findings suggest that uptake of intact 1,3-bis(2-chloroethyl)-1-nitrosourea was by passive diffusion. A time course of the uptake of intact 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea with either [14C]ethylene- or ring-labeled drug rapidly reached equilibrium, was temperature independent, and attained a cell/medium ratio greater than unity. Uptake of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea was sodium independent and was unaffected by the metabolic inhibitors (sodium fluoride, sodium cyanide, or 2,4-dinitrophenol) or by urea, a potential physiological competitor. Furthermore, addition of unlabeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea or 1,3-bis(2-chloroethyl)-1-nitrosourea had no effect on uptake of labeled 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. These findings suggest that uptake of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea also occurs by passive diffusion.

1

This work was supported by grants from the National Cancer Institute of Canada and the Medical Research Council of Canada.

This content is only available via PDF.