Several phytochemicals and micronutrients that are present in fruits and vegetables are known to exert cancer chemopreventive effects in several organs, including the colon. Among them, the soybean isoflavonoid genistein received much attention due to its potential anticarcinogenic, antiproliferative effects and its potential role in several signal transduction pathways. The present study was designed to investigate the effect of genistein on azoxymethane (AOM)-induced colon carcinogenesis and to study its modulatory role on the levels of activity of 8-isoprostane, cyclooxygenase (COX), and 15-hydroxyprostaglandin F dehydrogenase (15-PGDH) in the colonic mucosa and colon tumors of male F344 rats. At 5 weeks of age, groups of male F344 rats were fed control (AIN-76A) diet or a diet containing 250 ppm genistein. Beginning 2 weeks later, all animals except those in the vehicle-treated groups were given weekly s.c. injections of AOM (15 mg/kg body weight) for 2 successive weeks. All rats were continued on their respective dietary regimen for 52 weeks after AOM treatment and were then sacrificed. Colon tumors were evaluated histopathologically. Colonic mucosae and tumors were analyzed for COX, 15-PGDH, and 8-isoprostane levels. Administration of genistein significantly increased noninvasive and total adenocarcinoma multiplicity (P < 0.01) in the colon, compared to the control diet, but it had no effect on the colon adenocarcinoma incidence nor on the multiplicity of invasive adenocarcinoma (P > 0.05). Also, genistein signifciantly inhibited the 15-PGDH activity (>35%) and levels of 8-isooprostane (50%) in colonic mucosa and in tumors. In contrast, genistein had no significant effect on the COX synthetic activity, as measured by the rate of formation of prostaglandins and thromboxane B2 from [14C]arachidonic acid. The results of this investigation emphasize that the biological effects of genistein may be organ specific, inhibiting cancer development in some sites yet showing no effect or an enhancing effect on the tumorigenesis at other sites, such as the colon. The inhibition of 8-isoprostane levels by genistein indicates its possible antioxidant potential, which is independent of the observed colon tumor enhancement, yet this agent may also possess several biological effects that overshadow its antioxidant potential. The exact mechanism(s) of colon tumor enhancement by genistein remain to be elucidated; it is likely that its colon tumor-enhancing effects may, at least in part, be related to inhibition of prostaglandin catabolic enzyme activities.

1

This work was supported in part by United States Public Health Service Grants CA17613 and NO1CN-25450-01 from the National Cancer Institute.

This content is only available via PDF.