Asbestos and the phorbol ester tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA), increase c-fos and c-jun mRNA levels and AP-1 DNA binding activity in rat pleural mesothelial (RPM) cells, a target cell of asbestos-induced mesotheliomas (N. H. Heintz et al., Proc. Natl. Acad. Sci. USA, 90: 3299-3303, 1993). Because protein kinase C (PKC) is the intracellular receptor of phorbol ester tumor promoters and asbestos is a putative tumor promoter in the respiratory tract, we hypothesized that PKC might play a critical role in asbestos-induced cell signaling pathways associated with regulation of proto-oncogenes. Using a panel of PKC antibodies, we identified PKCα as the major PKC isozyme in RPM cells. We then pretreated cells with phorbol ester dibutyrate to down-modulate PKC or with calphostin C, a specific PKC inhibitor, to determine if depletion of PKCα could block asbestos-induced c-fos/c-jun expression. Quantitation of Northern blots showed that fiber-associated c-fos/c-jun mRNA levels were significantly lower either after PKCα down-modulation or pretreatment with calphostin C. In addition, to determine whether tyrosine kinases also were involved in proto-oncogene activation by asbestos, tyrphostin AG82 or herbimycin A was added to RPM cells before exposure to asbestos. These inhibitors decreased crocidolite-induced c-fos but not c-jun levels, suggesting that tyrosine kinases have different regulatory roles in asbestos-induced c-fos versus c-jun signaling pathways. The ability to block induction of asbestos-induced proto-oncogene expression using pharmacological intervention may be important in prevention and treatment of asbestos-induced proliferative diseases including lung cancers, mesothelioma, and pulmonary fibrosis.


Supported by Grant ES 06499 from the National Institutes of Environmental Health Sciences and Grant HL 39469 from the National Heart, Lung and Blood Institute.

This content is only available via PDF.