Bone is a common site of metastasis in human cancer. A major impediment to understanding the pathogenesis of bone metastasis has been the lack of an appropriate animal model. In this paper, we describe an animal model in which B16 melanoma cells injected in the left cardiac ventricle reproducibly colonize specific sites of the skeletal system of mice. Injection of 105 cells resulted in melanotic tumor colonies in most organs, including the skeletal system. Injection of 104 or fewer cells resulted in experimental metastasis almost entirely restricted to the skeletal system and ovary. In contrast, i.v. injection of 105 cells resulted in tumor colonies in the lung only. Left cardiac injection of 102 cells caused bone colonization, but the same number of cells injected i.v. did not colonize the lung. The number of bones with tumor colonies increased with increasing number of cells injected. Melanotic tumor colonies in the bone were characteristically distributed in the metaphysis of long bones and in the periphery of flat bones. Most animals developed paraplegia due to spinal cord compression by bony metastasis to the spine. Tumor colonization of bone occurred only in regions of bone containing hematopoietic bone marrow. This suggests that the injected tumor cells lodge, survive in the hematopoietic bone marrow environment, and grow to destroy adjacent bone. This experimental model of metastasis to bone will facilitate future studies of the pathophysiology and treatment of bone and bone marrow metastasis.


Supported by Research Grant NS22039 and USPHS S7RR05403G-25 from the NIH.

This content is only available via PDF.