Fumarate hydratase (FH) deficiency causes hereditary leiomyomatosis and renal cell carcinoma (RCC). FH-deficient tumors lack effective therapeutic options. Here, we utilized an epigenetic-focused single-guide RNA library to elucidate potential drug targets in FH-deficient tumors. The screen identified chromodomain helicase DNA binding protein 6 (CHD6) as an essential regulator of the growth of FH-mutated RCC. Mechanically, FH loss induced fumarate-mediated succinylation and inactivation of KEAP1, blocking subsequent ubiquitin-proteasome degradation of CHD6. Stabilized CHD6 formed a complex with p65 to establish pro-inflammatory enhancers and thereby regulate NF-κB-mediated transcription. Moreover, CHD6 recruited mSWI/SNF ATPases to maintain chromatin accessibility at CHD6-bound enhancers. The PROTAC degrader of SMARCA2/4 AU-15330 effectively abolished structures of cis-regulatory elements bound by CHD6 and suppressed the growth of FH-mutated, but not FH-intact, RCC in vivo. Collectively, these data indicate that CHD6 is a molecular bridge between FH deficiency and pro-inflammatory enhancers assembly that endows FH-deficient tumors with epigenetic vulnerabilities.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.