Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their non-coding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA-seq that enabled unbiased detection of target genes genome-wide. Generation of high resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in TNBC patients. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its enhancer RNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA-seq and ATAC-seq analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared to non-malignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of triple-negative breast cancer.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.