Senescence, a state of stable cell-cycle arrest, plays a dual role in cancer by suppressing tumor growth while potentially promoting relapse through its secretome, including senescence-associated secretory phenotype factors and senescent cell–derived extracellular vesicles (senEV). In this issue of Cancer Research, Ziglari and colleagues elucidate the role of senEVs in immune-mediated tumor suppression using an in vivo model that preserves immune integrity. Their findings demonstrate that senEVs are distinct from extracellular vesicles of proliferating cells, enriched with molecules that recruit and activate antigen-presenting cells and orchestrate TH17-driven antitumor immunity. Notably, the absence of senEVs accelerated tumor relapse, highlighting their necessity in senescence surveillance. Despite these advancements, further work is required to identify the specific senEV cargo driving antigen-presenting cell activation and to define the long-term dynamics of tumor relapse. This study underscores the potential of senEVs as biomarkers and therapeutic targets to enhance immune clearance of senescent cells and prevent cancer recurrence. The findings in this study pave the way for innovative strategies to modulate senescence and its secretome in cancer therapy.

See related article by Ziglari et al., p. 859

You do not currently have access to this content.