Abstract
Castration-resistant prostate cancer (CRPC) is incurable and fatal, making prostate cancer the second leading cancer-related cause of death for American men. CRPC results from therapeutic resistance to standard-of-care androgen deprivation (AD) treatments, through incompletely understood molecular mechanisms, and lacks durable therapeutic options. In this study, we identified enhanced soluble guanylyl cyclase (sGC) signaling as a mechanism that restrains CRPC initiation and growth. Patients with aggressive, fatal CRPC exhibited significantly lower serum levels of the sGC catalytic product cyclic GMP (cGMP) compared with the castration-sensitive stage. In emergent castration-resistant cells isolated from castration-sensitive prostate cancer populations, the obligate sGC heterodimer was repressed via methylation of its β subunit. Genetically abrogating sGC complex formation in castration-sensitive prostate cancer cells promoted evasion of AD-induced senescence and concomitant castration-resistant tumor growth. In established castration-resistant cells, the sGC complex was present but in a reversibly oxidized and inactive state. Subjecting CRPC cells to AD regenerated the functional complex, and cotreatment with riociguat, an FDA-approved sGC agonist, evoked redox stress-induced apoptosis. Riociguat decreased castration-resistant tumor growth and increased apoptotic markers, with elevated cGMP levels correlating significantly with lower tumor burden. Riociguat treatment reorganized the tumor vasculature and eliminated hypoxic tumor niches, decreasing CD44+ tumor progenitor cells and increasing the radiosensitivity of castration-resistant tumors. Thus, this study showed that enhancing sGC activity can inhibit CRPC emergence and progression through tumor cell–intrinsic and extrinsic effects. Riociguat can be repurposed to overcome CRPC, with noninvasive monitoring of cGMP levels as a marker for on-target efficacy.
Significance: Soluble guanylyl cyclase signaling inhibits castration-resistant prostate cancer emergence and can be stimulated with FDA-approved riociguat to resensitize resistant tumors to androgen deprivation, providing a strategy to prevent and treat castration resistance.